《量子材料内首次测量电子自旋》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-06-28
  • 6月13日,一个国际研究团队首次成功测量了一类新型量子材料内的电子自旋,这一成就有望彻底改变未来量子材料的研究方式,为量子技术的发展开辟新途径,并在可再生能源、生物医学、电子学、量子计算机等诸多领域找到用武之地。相关研究论文已刊发于最新一期《自然·物理学》杂志。

    电子自旋是电子的基本性质之一,指电子在空间移动的曲率。在最新研究中,来自意大利、德国、英国和美国的研究人员,通过先进的实验技术,利用粒子加速器同步加速器产生的光,并借助于对物质行为建模的现代技术,首次成功测量了一种新型的、颇具潜力的拓扑量子“笼目”(kagome)材料内电子的自旋,这也是科学家首次测量与拓扑概念相关的电子自旋。“笼目”指一种传统的编织竹纹,意指编织的孔眼图案。

    意大利博洛尼亚大学梅尼科·迪桑特解释说,以足球和甜甜圈为例,这两个物体形状不同,决定其拥有不同的拓扑性质。同样,电子在材料中的行为也受到某些量子性质的影响,这些量子性质决定了电子在物质内的自旋。

    尽管很多年前科学家们就知道了电子存在自旋,但迄今还没有人能够直接测量量子材料内电子的这种“拓扑自旋”。在最新研究中,为测量“笼目材料”内电子的自旋,研究人员利用了被称为“圆二色性”的特殊效应,这是一种只能与同步加速器光源一起使用的特殊实验技术,利用了材料基于不同偏振吸收不同光的能力。理论研究人员使用强大的超级计算机,实现了复杂的量子模拟,实验团队则据此实现了测量。

    “笼目材料”相关研究结果有助人们更多地了解此类材料特殊的磁性、拓扑性和超导性质,为量子材料和量子力学研究开辟新道路。

    转自科学网


  • 原文来源:https://news.sciencenet.cn/htmlnews/2023/6/502752.shtm
相关报告
  • 《宁波材料所在低维量子功能材料电子结构研究方面获得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-28
    • 自从石墨烯被发现以来,二维材料由于具有迷人的特性和广泛的应用前景而得到了研究者的关注。受到石墨烯的不寻常特性与其平面蜂窝状结构密切相关的启发,目前已有许多二维蜂窝状材料,如硅烯、锗烯和磷烯等,得到了广泛的研究。然而,大多数已报道的二维蜂窝状材料是由p电子元素组成的,而由d电子元素组成的二维蜂窝状材料却很少见。许多具有d电子的过渡金属元素可以以自旋极化磁性离子的形式存在。因此,利用过渡金属的二维蜂窝状材料有望于实现二维磁性,它们是二维铁磁体的强力候选者。   第一个过渡金属的蜂窝状结构是生长在Ir(111)衬底上的铪烯。同许多其它过渡金属的单层蜂窝状材料类似,理论预言,铪烯于其布里渊区的K点具有狄拉克锥型的电子结构以及可能具有铁磁特性。不过,也有一些理论计算认为,铪烯的狄拉克锥型电子结构可能会被Hf原子和衬底Ir原子之间的比较强的相互作用所淬灭,其铁磁特性也会被抑制。因此,利用角分辨光电子能谱(ARPES)观测铪烯的电子结构的直接实验证据就显得很重要,可以解决以上理论计算的争议。   中国科学院宁波材料技术与工程研究所量子功能材料团队何少龙课题组肖绍铸等人利用角分辨光电子能谱(ARPES)直接测量了在衬底Ir(111)上生长的铪烯(hafnene)的电子结构。研究发现,在费米能级附近,Ir衬底上的铪烯(hafnene)的电子结构是简单的位于布里渊区Γ点的抛物锥型电子口袋(electron pocket),如文末图所示,可以视为二维电子气的能带结构,电子有效质量为1.8 me,电子气密度为7 × 1014 cm-2。结合理论计算分析,研究人员认为,自旋轨道耦合(SOC)和铪原子的较强的Hubbard相互作用的存在抑制了先前理论预测的狄拉克锥型电子结构;铪烯中的铪原子和衬底的铱原子之间的相互作用淬灭了铪烯中的大部分能带,以致幸存的能带为二维电子型的能带。此研究结果具有两方面的重要意义:一方面,hafnene/Ir(111)界面出现的二维电子气型能带结构为与衬底有相互作用的强耦合二维系统的电子结构提供了新的见解;另一方面,为了探索铪烯的本征电子结构,需要通过更换衬底或者采取类似石墨烯研究中通常采用的插层方法来避免衬底的影响。此研究为基于铪烯以及其它过渡金属蜂窝状材料的潜在器件应用提供了关键信息。   该工作以“Direct evidence of two-dimensional electron gas-like bandstructures in hafnene”为题发表在Nano Research期刊上,并被选为封底文章(线上版本链接:https://rdcu.be/cDjcc)。该工作得到国家重点研发计划(2017YFA0303600、2020YFA0308800)、国家自然科学基金(11974364、11674367、U2032207、92163206、11974045、61725107)、浙江省自然科学基金(LZ18A040002)、宁波市自然科学基金(2018B10060)和宁波3315项目的支持。
  • 《钻石或是自旋电子元件潜在材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-13
    • 传统电子学依赖于控制电荷。最近,研究人员探寻了一种被称为自旋电子学的新技术潜力。自旋电子学依靠探测并控制粒子自旋。该技术或能带来新的更加高效和强大的设备。 在一篇日前发表于美国物理联合会(AIP)出版集团所属《应用物理快报》的论文中,研究人员测量了电荷载子的自旋同钻石中的磁场发生相互作用的强度有多大。这种关键属性证实,钻石可作为自旋电子元件的一种颇有前景的材料。 澳大利亚拉筹伯大学物理学家Golrokh Akhgar介绍说,钻石之所以有吸引力,是因为和传统的半导体材料相比,它能被相对简单地处理并且制成自旋电子设备。传统量子元件基于多重半导体薄层,而这需要超高真空内非常精细的制造工艺。 “钻石通常是极好的绝缘体。”Akhgar表示。但当暴露在氢等离子体中时,钻石会将氢原子吸收进表面。当氢化钻石被引到潮湿的空气中,它变得具有导电性,因为一薄层水在其表面形成,从而将电子从钻石中剥离出来。钻石表面失去的电子表现得像带正电荷的粒子,从而使表面具有导电性。 研究发现,这些空穴拥有很多适合自旋电子学的属性。最重要的属性是被称为自旋轨道耦合的相对论效应,即电荷载子的自旋同其轨道运动发生相互作用。强烈的耦合使研究人员得以利用电场控制粒子的自旋。 在此前工作中,研究人员测量了空穴的自旋轨道耦合被电场“改造”的强度。他们还证实,外部电场能调整耦合强度。 在最新试验中,研究人员测量了空穴自旋同磁场相互作用的强度。他们使不同强度的恒定磁场在低于4开尔文的温度下同钻石表面平行,并且同时施加一个不断变化的垂直磁场。通过监控钻石电阻如何改变,他们确定了g因数。该数字能帮助研究人员利用磁场控制未来元件的自旋。 “电荷载子同电场和磁场的耦合强度是自旋电子学的核心。”Akhgar表示,“现在,我们拥有了通过电场或者磁场控制钻石表面导电层中自旋的两个关键参数。” .