《中国学者找到“国产”自闭症猕猴模型》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 江洪波
  • 发布时间:2019-07-21
  • 6月17日,中国学者近日在《Nature》上发表论文,在自闭症非人灵长类动物模型的研制上取得新突破。研究人员借助CRISPR基因编辑系统在猕猴上成功改造了与自闭症高度相关的Shank3基因。该基因的缺失或突变会导致大脑神经元发育不成熟、神经连接减少,个体表现出社交回避、刻板行为等自闭症症状。

  • 原文来源:;https://www.nature.com/articles/s41586-019-1278-0
相关报告
  • 《Science:非编码DNA变异也会增加自闭症风险》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-26
    • 来,科学家们已明确指出首次出现的基因突变(即新生突变)导致大约三分之一的自闭症谱系障碍(autism spectrum disorder, ASD)病例。在一项新的研究中,来自美国加州大学圣地亚哥分校等研究机构的研究人员发现了一类新的罪魁祸首:非编码DNA区域中发生的罕见的遗传性变异,它们可能解释着余下风险因素(即除新生突变之外的风险因素)中的一些。相关研究结果发表在2018年4月20日的Science期刊上,论文标题为“Paternally inherited cis-regulatory structural variants are associated with autism”。 这些新发现的风险因素与已知的自闭症遗传原因有两种重要的不同之处。首先,这些遗传性变异并不直接改变基因,而是破坏打开和关闭基因的DNA控制元件,即顺式调控元件(cis-regulatory element, CRE)。其次,这些遗传性变异不是作为自闭症儿童的新突变发生的,而是从他们的父母遗传下来的。 加州大学圣地亚哥分校医学院的Jonathan Sebat教授说,“十年来,我们已知道自闭症的遗传原因部分上是由基因编码的蛋白序列发生的新生突变。但是,基因序列仅占基因组的2%。” 为了研究ASD患者基因组中剩下的98%的DNA序列,Sebat和他的同事们分析了来自2600个家庭的9274名受试者的完整基因组。在圣地亚哥的人类长寿公司(Human Longevity Inc.)和Illumina公司测序了一千名受试者的基因组序列,并在加州大学圣地亚哥分校的圣地亚哥超级计算中心分析了这些被测序出的DNA序列。这些数据随后与来自Simons Simplex Collection自闭症数据库和Autism Speaks MSSNG全基因组测序项目(Autism Speaks MSSNG Whole Genome Sequencing Project)的其他大型研究相结合在一起。 这些研究人员随后分析了结构变异(structural variant, SV):缺失的或重复的DNA片段,这些片段的缺失或重复破坏了基因的顺式调控元件(CRE),因而这些结构变异被称作CRE-SV。这些研究人员从完整的家族基因组中发现从父母中遗传的CRE-SV也会促进ASD产生。 论文共同第一作者、加州大学圣地亚哥分校Sebat实验室博士后研究员William M. Brandler博士说,“我们还发现CRE-SV主要遗传自父亲,这是令人吃惊的。之前的研究已发现一些蛋白编码变异(即编码蛋白的基因发生的变异)主要遗传自母亲,这种现象被称为母本起源效应(maternal origin effect)。我们发现非编码变异(即基因组中非编码DNA发生的变异)存在的父本起源效应(paternal origin effect)提示着母亲和父亲的遗传贡献可能存在着本质上的差异。” Sebat说,当前的研究并没有确切地解释是什么机制决定了这些亲源效应(parent-of-origin effect),不过他提出了一种合理的模型。 他说,“人类存在着广泛的遗传变异,其中编码变异(coding variant)具有较强的效应,而非编码变异(noncoding variant)具有较弱的效应。如果男性和女性对这些变异的耐受性存在着差异,那么这可能会产生我们观察到的这些亲源效应。”
  • 《基因修复向成年自闭症发出挑战》

    • 来源专题:中国科学院文献情报生命健康领域集成服务门户
    • 编译者:江洪波
    • 发布时间:2019-05-06
    • 佛罗里达州Scripps研究中心的Rumbaugh实验室在开放获取科学期刊《eLife》上撰文,报告称,在一种叫做SYNGAP1失调症的遗传性自闭症成年小鼠模型中,癫痫发作和记忆的测量指标有所改善。 只有一个SYNGAP1基因拷贝工作的孩子天生不能产生足够的SYNGAP1蛋白。两份“坏”拷贝则是致命的。根据缺陷程度,这些孩子长大后会面临一系列的发育挑战。可能包括智力障碍、自闭症样行为、感官加工紊乱和对药物无反应的癫痫发作。佛罗里达州Scripps研究所神经科学系副教授Gavin Rumbaugh博士说,这种疾病可能每10000人中就有一到四个人受到影响,这与脆性X综合征的频率相似。然而,只有通过基因检测才能发现,结果是仅很小一部分的患者能被确诊。 为了研究在成年期治疗SYNGAP1障碍是否可行,Rumbaugh的研究小组用遗传方法将小鼠SYNGAP1蛋白水平恢复到了正常水平。治疗后的成年小鼠表现出多方面的改善。Rumbaugh说,这表明基因的一个断裂拷贝不仅会在大脑发育过程中对大脑造成伤害,而且还会对成人大脑产生影响。Rumbaugh补充说,一旦有了选择,在生命的任何阶段都有理由进行治疗。 “我们在小鼠身上的发现表明,成年患者的神经发育障碍的病程可以改变,”Rumbaugh说。“在恢复成年动物的SYNGAP1蛋白水平后,我们可以纠正与癫痫和记忆障碍有关的脑功能障碍。” 值得注意的是,本文提供了一种方法来衡量潜在药物或其他治疗神经发育障碍的有效性。癫痫发作之间的电图峰值是癫痫的一个指标。在他们的论文中,科学家们观察了从SYNGAP1障碍患者登记处收集的人类脑电图数据,发现这些峰值的出现更可能发生在睡眠中。在SYNGAP1障碍的小鼠模型中也观察到了类似的现象。Rumbaugh说,建立能够预测大脑功能全面改善的生物标志物将是推进严重神经发育障碍患者治疗的关键一步。 Rumbaugh说,显然需要一种治疗方案,随着SYNGAP1障碍儿童的成熟,癫痫发作通常会变得更频繁,对于许多患者来说,这些发作对抗癫痫药物没有反应。 “了解受这种严重疾病影响的家庭是非常宝贵的,并促使我们开发出能改善儿童和成人生活的治疗方法,”Rumbaugh说。“令人鼓舞的是,基因治疗技术提高了其他类型大脑疾病的病理低蛋白水平,现在在临床上显示出了希望。”