《清华大学Nature发布重要成果》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-06-06
  • 来自清华大学、美国卡内基梅隆大学等机构的研究人员,通过解析后期核pre-60S核糖体的结构揭示出了装配因子不同的作用。这一研究成果发布在5月25日的《自然》(Nature)杂志上。

    清华大学生命科学学院的高宁(Ning Gao)研究员,和卡内基梅隆大学的John L. Woolford是这篇论文的共同通讯作者。

    在这篇Nature文章中,高宁和合著作者们指出在真核生物中核糖体合成是一个高度复杂的过程,涉及核仁、核质和细胞质中时空上受控的核糖体(r-protein)结合及核糖体RNA重塑事件。Pre-60S核糖体装配经历多个连续的阶段,数组装配因子负责协调这一过程。在pre-60s粒子中,三种主要的非重叠因子Nsa1、Nog2 和 Nmd3存在与否,确定了连续从核仁通过核质转换至最后阶段许可核输出。

    研究人员利用低温电子显微镜(cryo-EM)确定了采用表位标记装配因子Nog2亲和纯化出的酵母核质pre-60S粒子的结构。他们的数据指出了20多种装配因子的定位并确定了它们的结构,其主要富集于两个区域:一个从中心突起延伸至多肽隧道出口的区域,以及包含分开5.8S和25S核糖体RNAs的ITS2的一个结构域。

    索取 PerkinElmer 新一代小动物活体/离体二合一MicroCT成像系统详细资料请填写联系方式

    尤其是两个调控GTP酶:Nog2和Nog1作为枢纽蛋白与多个不同的装配因子及功能性核糖体RNA元件发挥了互作,证明了它们在结构重塑检查点及核输出中起重要作用。此外,研究人员获得的组成和结构不同的pre-60S中间体快照,提供了在核输出前三个主要重塑事件:5s核糖核蛋白旋转、活性中心构建和移除ITS2的重要机制细节。

    这些丰富的结构信息为详细分析不同装配因子在真核生物核糖体装配中所起的分子作用提供了一个框架。

    高宁实验室主要利用冷冻电镜三维重构技术研究蛋白质的生物合成和降解、核糖体的组装成熟、蛋白翻译的调控等重要生物过程。近年在Nature及其子刊上发表了多项重要的研究成果。

  • 原文来源:http://www.biotech.org.cn/information/141679
相关报告
  • 《清华大学在力学结构超材料研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-16
    • 清华大学航天航空学院李晓雁课题组、与中国科学院金属所、美国布朗大学以及大连理工大学合作,在《纳米快报》(Nano Letters)发表了题为《克服强度-可恢复性制约的三维高熵合金—聚合物复合纳米点阵超材料》(Three-Dimensional High-Entropy Alloy–Polymer Composite Nanolattices That Overcome the Strength–Recoverability Trade-off)的研究论文。该论文设计并制备了一种由高熵合金和聚合物组成的复合纳米点阵超材料。该点阵材料兼具高强度和良好的可恢复性,克服了早先所有微纳米点阵材料的强度与可恢复性之间相互制约的问题。   三维微纳米点阵材料具有优异的力学性能,如低密度、高刚度等。但是,现有的微纳米点阵材料的强度与可恢复性之间存在着相互约束,即高强度的点阵材料通常表现为脆性,而可恢复性能好的点阵材料的强度较低。这一强度与可恢复性的制约在很大程度上限制了微纳米点阵材料在能量存储和机械致动等领域的应用潜力。   复合纳米点阵材料克服了传统微纳米点阵材料的强度与可恢复性之间的相互制约   李晓雁课题组提出了一种基于复合材料的设计方案,解决上述难题。该设计方案首先采用了先进的纳米尺度增材制造技术(三维双光子光刻激光直写)直接打印高弹性聚合物材料组成的纳米点阵结构(最小特征尺寸约为260nm),然后通过磁控溅射手段将具有高强度的高熵合金材料均匀镀层在聚合物骨架的表面(厚度仅为14.2-126.1nm),从而实现了“1+1>2”的优异力学性能。该纳米点阵不仅保有聚合物材料的高弹性和良好的可恢复性,而且由于高熵合金纳米镀膜的存在,使得该纳米点阵兼具高强度的优点,从而使得该复合纳米点阵材料克服了早先微纳米点阵材料具有的强度与可恢复性之间相互制约的问题。   (a-h)复合纳米点阵材料的原位电镜压缩实验; (i,j)复合纳米点阵材料的比强度、单位体积能量吸收与其他微纳米多孔材料的比较   在论文中,研究团队首先展示了该复合纳米点阵材料的制备和微结构及其力学性能表征。通过原位扫描电镜压缩实验证实了复合纳米点阵材料同时具有高的强度和良好的可恢复性。该纳米点阵结构的比强度高达0.027MPa/kg·m3,最大压缩应变超过50%仍然可以实现几乎完全恢复,且单位体积能量吸收高达4.0MJ/m3,这一数值比自然界具有相同密度的多孔材料高1-3个数量级。研究结果同时表明,随着高熵合金镀层厚度的增加,压缩过程中主要变形机制发生从局部屈曲到脆性断裂的转变。当厚度介于14.2-50.0nm之间时,复合纳米点阵材料的比模量和比强度达到极大。   近年来,李晓雁副教授研究团队主要从事新型微纳米结构材料力学行为和力学性能的研究,在相关领域取得了多项重要的成果。相关工作发表在《自然材料》(Nature Materials)、《自然通讯》(Nature Communications)、《科学进展》(Science Advances)、《先进材料》(Advanced Materials)等期刊上。   清华大学航院李晓雁副教授、中国科学院金属所姚佳昊副研究员、李毅研究员和美国布朗大学高华健教授为本文的共同通讯作者。清华大学航院2013级博士生张璇为本文第一作者。该研究得到了国家自然科学基金项目、中组部青年相关人才计划项目的资金支持。   论文链接: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b01241
  • 《国内首份大学科学与技术贡献排名(2019)发布 清华大学名列第一》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhangst
    • 发布时间:2019-06-24
    • 18日,由中关村兰德科教评价研究院(简称研究院)推出的国内首份大学科学与技术贡献排行榜(2019)在京发布。位列前10名的高校分别是清华大学、浙江大学、北京大学、上海交通大学、华中科技大学、复旦大学、武汉大学、西安交通大学、北京理工大学和北京航空航天大学。 据研究院教育评估部主任王战军介绍,大学排名一直是媒体关注的热点,热度不减,甚至有一些国外的排名机构都在开拓中国市场。但大学是一个复杂的系统,用简单的排名反应其实力和地位存在这样那样的问题。因此,此次排名聚焦大学科学与技术贡献,从一个侧面去做,力求更客观、科学、可靠。 据了解,大学科学与技术贡献评价体系坚持聚焦中国特色、尊重科研规律、突显核心要素的设计原则和评价思路。经过征求专家意见和反复研讨,制定了大学科学与技术贡献评价指标体系,包括顶级成果、成果转化、高水平成果、领军人才、青年英才、高水平人才等6个一级指标以及15个二级指标。本排名体系包含了反映高校科技创新能力、科技成果及水平、高科技人才等贡献指标,例如国家三大奖、学校科学技术成果转让金额、学校发明专利授权数量等。 会上,研究院教育评估部研究员李明磊解释说,此次评价数据源包括政府网站、国家自然科学基金委员会官网、中国科学院和中国工程院官网、中国知网、高校官网、科学网等。本次排名共公布大学科学与技术贡献200强。位列前10名的高校分别是清华大学、浙江大学、北京大学、上海交通大学、华中科技大学、复旦大学、武汉大学、西安交通大学、北京理工大学和北京航空航天大学。 …………