《混合氧化钛/聚合物两亲性纳米材料,控制尺寸,用于药物包封和递送》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-20
  • 本工作描述第一次混合药物的合成量加载二氧化钛/两亲性聚合物纳米颗粒的可控大小利用一个简单的和可再生的溶胶-凝胶过程,包括钛(IV)/丙酮的形成含氧的混合有机复杂之后,其与一个两亲性聚(环氧乙烷)量b聚(环氧丙烷)嵌段共聚物在丙酮和水nanoprecipitation必经阶段。混合纳米粒子的大小取决于复杂的老化过程,例如混合纳米粒子的直径在228到53纳米之间,分别为老化1天和36天(动态光散射)。此外,由于在表面涂有共聚物的聚(环氧乙烷)块,它们在水中表现出优异的物理稳定性。相反,无聚合物TiO2颗粒大且沉淀快。将疏水药物模型硝唑尼德与前驱体溶液结合,可得到混合纳米颗粒,其含量为12.9% w/w,并在双峰剖面下释放。通过高分辨率透射电子显微镜(Titan³Themis G2 300)分析,揭示了这些新型杂交体的多孔非晶纳米结构,以及药物和共聚物在纳米颗粒体中的共聚。最后,在超声作用下,我们的混合纳米粒子在体外产生活性氧,为其在声动力和药物释放治疗中的应用铺平了道路。

    ——文章发布于2018年11月15日

相关报告
  • 《纳米材料相遇斑马鱼:毒性评估和药物递送应用》

    • 来源专题:新药创制
    • 编译者:杜慧
    • 发布时间:2019-11-01
    • 随着用于各种应用的工程纳米材料的迅速发展,迫切需要用于评估纳米材料对环境和人类安全的潜在危险作用的体内毒理学研究。斑马鱼由于其高繁殖力,低成本,发育阶段特征明确,光学透明性等优点,长期以来一直被视为化学和污染物生物安全性评估的“金标准”。因此,斑马鱼具有高通量纳米毒性筛选的巨大潜力。在这篇综述中,我们总结了斑马鱼对不同纳米材料的体内毒理学特征,包括银纳米颗粒(NPs),氧化铜NPs,二氧化硅NPs,多聚物NPs,量子点,纳米级金属-有机骨架等,并着重于这些纳米材料的理化特性(例如尺寸,表面电荷和表面化学性质)如何影响其生物安全性。此外,我们还报告了近期使用斑马鱼作为模式生物用于治疗评估,生物分布追踪和负载药物控释的相关纳米药物体内递送系统研究的最新进展。此外,还讨论了斑马鱼模型的局限性和特殊用途。总之,斑马鱼有望成为纳米毒性和药物传递评估的高通量筛选平台,这对安全纳米材料以及更有效的纳米药物的设计提供了指导。
  • 《利用聚合物开发3D打印中的金纳米颗粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-02
    • 3D打印,也被称为增材制造,已经成为一种非常有用的技术,用于制造非常小和复杂的结构。它最初的建立促进了个人和有趣的对象的创造,这些对象是由对技术感兴趣的人在家里打印出来的。 然而,随着时间的推移,越来越多的制造商开始转向3D打印方法,以比其他方法更低的成本生产复杂的定制零件。这是一个不断发展的科学、工程和制造领域,而且很可能在未来许多年内继续沿着这条道路发展。 与3D打印这种相对较新的技术不同,金纳米颗粒已经被使用了很多年——甚至在我们知道纳米颗粒是什么之前。这在4世纪的人工制品Lycurgus杯中表现得很明显,金纳米颗粒被证明是造成所观察到的二色性颜色的原因。 在现代科学中,金纳米颗粒已经被用于多种应用,从抗癌剂到表面等离子体成像增强剂,再到电子、催化剂、主动传感器材料中的导电管道,等等。 与更复杂的纳米颗粒相比,它们合成起来相对简单,而且它们的广泛应用意味着研究人员现在正在转向其他制造、使用和整合它们的方法。 近年来,研究人员开发了利用3D打印方法,在打印过程中将金纳米颗粒直接与聚合物和其他介质结合,从而生成包含金纳米颗粒的3D打印复合材料。 近年来,这一交叉领域取得了长足的进步,为光学和制药行业带来了广阔的发展前景。下面,我们来看看这个领域是如何发展的。 通过3D打印在聚合物中嵌入金纳米颗粒 利用这些技术的一种更成熟、更常见、更简单的方法是使用聚合物作为嵌入多种类型纳米颗粒(包括金纳米颗粒)的复合介质。 现在有很多聚合物纳米复合材料,但是最近的一项研究涉及到使用聚合物和金纳米颗粒来制造本质上是双色的3D打印复合材料(很像Lycurgus杯子),用作光学过滤器。 以聚醋酸乙烯酯(PVA)为载体,采用熔融沉积模拟(FDM)方法制备了纳米复合材料。当纳米颗粒- pva纳米复合材料干燥时,呈现出一种棕色反射和紫色透射的二向色效应,而用更传统的方法形成的类似纳米复合材料则没有这种效应。 研究人员还用这种双色材料制作了一个花瓶和一个水杯,虽然要使用,但它们需要涂上一层聚二甲基硅氧烷(PDMS),以防止水渗透到纳米复合材料中。 使用微流体 这一领域虽然没有那么发达,但却很有趣,它依赖于制造可用于合成金纳米颗粒的聚合装置,而不是在3D打印过程中使用它们。 研究人员利用FDM技术制造了一种聚乳酸(PLA)微流控装置,并将其置于聚甲基丙烯酸甲酯(PMMA)载玻片上,以制造微流控通道。这些微流体通道随后被用作反应室,通过连续流动的合成路线来制造金(和银)纳米颗粒,因为这可以防止聚合物通道被污染。 通过改变微流体的合成参数(浓度、温度、流速等),可以制备出不同尺寸的金纳米颗粒。 制造纳米金墨水 最近的一项研究涉及使用梳状聚合物体系结构来开发金纳米颗粒油墨。该团队使用了不同的逐步增长聚合和click化学方法来开发不同的聚合物体系结构(基于聚氨酯),可以包裹和封装金纳米粒子。 然后是(3D打印)喷墨打印的封装金纳米颗粒油墨。在许多情况下,金纳米颗粒油墨在喷墨打印时是不稳定的,因为纳米颗粒易于凝聚,但在封装时,聚合物稳定了金纳米颗粒,这意味着它们可以在表面打印而不会发生凝聚。 聚合物-纳米颗粒油墨被发现是长期稳定的(超过6个月)。金纳米粒子在制药工业中有很大的潜力,这种聚合物稳定印刷方法可以用于制造稳定的、定制的金纳米粒子生物传感器。 人们认为,这种方法也可以用于稳定和在聚合物中嵌入其他金属纳米颗粒,从而为更多的应用开辟了潜力。