Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro
Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG?+?PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.
概要翻译:
用聚乙二醇(PEG)、聚乙烯醇(PVA)修饰的金纳米粒子(AuNPs)或它们的带正或者负表面电荷的混合物,用来探讨单核细胞来源的树突状细胞(MDDCs)的吸收和反应。电感耦合等离子体发射光谱法和透射电子显微镜被用来测定Au在该细胞内的聚集。对该细胞的细胞活力、炎症反应、活化标志物、抗原吸收和加工进行了分析。结果表明,金纳米颗粒没有引起树突状细胞(MDDCs)的表型变化、激活或免疫特性改变。