《技术显示了单个癌细胞对药物的反应》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-12-10
  • 本周《科学》杂志报道的一项新技术克服了在细胞样本上进行的典型高通量化学筛选的几个限制。这类筛选通常用于发现新的抗癌药物,以及许多其他生物医学应用。

    目前大多数这种性质的筛选要么提供一个粗略的读数,如细胞存活、增殖或细胞形状的改变,要么只提供一个特定的分子发现,如检测一种特定的酶是否被阻断。

    由于这两个极端之间存在巨大的差异,大多数的检测通常会忽略细微的基因表达或细胞状态变化,而这些变化可能揭示了在受扰细胞内部触发的机制。这样的检测也可能无法检测出细微的差别,这些细微差别可能表明正在测试的药物可能会产生意想不到的副作用,或者基因相同的细胞对同一种药物产生不同的反应,或者为什么细胞会对之前效果良好的治疗产生抗药性。

    为了解决这些局限性,一个代表许多领域的研究团队合作开发了一种信息技术。

    “这项技术实际上在两种常见的检测方法之间占有一席之地,”其中一名主要研究人员、医学博士桑贾伊·r·斯里瓦桑(Sanjay R. Srivatsan)说。就读于西雅图华盛顿大学医学院的医学科学家培训项目。“你可以得到一种细胞反应的全局视图。例如,我们认为对药物进行分类,并弄清它们的作用机制,将会非常有用。”

    这项新技术结合了细胞核标记技术的改进和数百万细胞中基因表达谱分析的进步。这是在单细胞分辨率和成本效益的方式完成。他们将这种新的筛选方法命名为sci-Plex。

    在12月5日的网络版《科学》杂志上,研究人员报告了他们的概念验证发现。这篇论文的主要作者,除了Srivatsan,还有华盛顿大学医学院的博士后研究员Jose L. McFaline-Figueroa;Vijay Ramani,前华盛顿大学基因组科学研究生,现在是加州大学桑德勒学院研究员。

    资深研究员包括科尔·特拉普内尔(Cole Trapnell)、华盛顿大学医学院(UW School of Medicine)基因组科学副教授、西雅图Brotman Baty Institute for Precision Medicine研究员,以及Jay Shendure,华盛顿大学医学院(UW medical School)基因组科学教授、Brotman Baty Institute科学主任。Shendure也是Howard Hughes医学研究所的研究员,并指导艾伦研究所发现中心进行细胞谱系追踪。

    特拉普内尔说:“sci-Plex技术使我们能够汇集大量基因不同的细胞,并观察许多单个细胞在受到不同方式干扰时会发生什么。”“然后我们收集所有数据,利用机器学习和数据科学的现代工具进行分析,了解每种药物对细胞的作用。”

    为了让sci-Plex发挥它的功能,研究人员将它应用于三种癌症细胞系(白血病、肺癌和乳腺癌)的筛选,用180种化合物治疗癌症、艾滋病和自身免疫性疾病。这些细胞被标记成小的单链DNA的核散列。

    这种散列识别不同的细胞,并允许科学家绘制出哪些细胞接受了哪些药物。在一个实验中,研究人员测量了来自5000多个独立处理样本的65万个单细胞的基因表达。

    结果表明,某些癌细胞对特定化合物的反应方式存在显著差异。他们还揭示了细胞之间关于其他化学家族的共有模式,以及在化学家族中区分药物的一些特性。

    研究人员对一类癌症药物HDAC抑制剂的作用模式进行了更深入的研究。他们发现,基因调控的变化与这些抑制剂通过阻断能量来源来阻止癌细胞增殖的观点相符。

    在描述这项研究的另一个方面时,Srivistan说:“我们可以用基因表达谱来对药物的效力进行分类,这真的很酷。随着剂量变化超过4个数量级,我们可以看到细胞反应的平稳增长。”

    总的来说,sci-Plex结果表明,它可以扩展到数千个样本,以针对不同的生化途径、催化剂、调节因子和作用模式。

    特拉普内尔说:“其中一些工作可能涉及疾病的治疗,帮助医学研究人员了解某些药物如何产生效果,细胞阶段如何影响疗效,以及为什么有些药物对某些细胞有效,而对其他细胞无效。”

    特拉普内尔补充说:“医生也给很多人开同样的几剂药,对一些人有效,对另一些人无效。”“sci-Plex可能会帮助我们更好地理解为什么会这样。”

    特拉普内尔说,他相信sci-Plex可能会成为精准医疗的有用工具:“最终,当有人患上癌症时,我们希望杀死整个肿瘤,所有的细胞,而不仅仅是部分细胞。因此,理解为什么一些细胞对药物有一种反应,而另一些细胞有不同的反应,对于设计完全有效的治疗方法至关重要。”

    研究人员指出,sci-Plex的一个明显优势是,它可以区分化合物如何影响细胞的子集。除了构成肿瘤的细胞外,这些亚群还包括实验室培养皿中的活细胞模型,如重编程细胞、有机体和合成胚胎。

    研究人员预测,核散列的简单和低成本,加上他们的单细胞测序方法的灵活性和可扩展性,可能会给科学复杂的许多基础研究和生物医学的实际应用。例如,它可能有助于建立一个全面的细胞对药物干预反应图谱。

    “这是一个非常普遍的策略,”Srivatsan说。“它可以用任何科学家都能获得的试剂来进行,它可以有多种用途。”

    杰尔表示同意。“我对单细胞基因组学科学界如何发现我们没有预料到的东西很感兴趣。这在我们的领域里经常发生。技术开发人员和实验生物学家正在以各种方式重新利用技术,这是最初的开发人员没有预见到的。”

    参与这个项目的三名科学家,没有一个在新闻发布会上被点名,在Illumina公司以股票所有权和就业的形式宣布了经济利益。Illumina或UW申请的一项或多项专利可能包括发表在《科学》杂志上的方法或数据。

    ——文章发布于2019年12月5日

相关报告
  • 《纳米稳定脂质体能有效地将化疗药物传递给癌细胞》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-06-01
    • 几十年来,科学家们一直在探索使用脂质体——由脂双层分子构成的空心球体——向肿瘤细胞运送化疗药物。但是药物有时会在到达目的地之前从脂质体中泄露出来,减少肿瘤所接受的剂量,并在健康组织中引起副作用。现在,研究人员在美国化学学会的《纳米快报》上报道了一种通过在脂质体的内腔中嵌入硬纳米材料来稳定脂质体的方法。 科学家们已经尝试了各种方法来防止脂质体泄漏,例如在其表面涂上聚合物或在双层膜中交联脂质。然而,这些修饰可以改变脂质体的性质,使它们与细胞发生不同的作用。Chao Fang, Jonathan Lovell和他的同事想要找到一种新的方法来稳定脂质体,使其表面保持完整。他们决定尝试纳米粒子——一种带有开口的凹形纳米结构,一旦癌细胞内的脂质体双层膜破裂,药物就可以逃逸。他们推断,通过在纳米负鼠周围聚集脂质双分子层,刚性结构可以机械地支持脂质体。 研究小组制备了二氧化硅纳米粒子,用带正电的化学基团修饰它们的表面,并在每个结构周围组装了一个带负电的脂质双分子层。然后,他们将化疗药物阿霉素放入充满水的中心。由此产生的纳米稳定脂质体在血清中或在绝对压力下比常规脂质体泄漏更少,就像在血管中遇到的那样,但当癌细胞在培养皿中吸收时仍释放阿霉素。在对已经移植转移的乳腺肿瘤的小鼠进行的实验中,注射了纳米线脂质体的动物比那些接受常规脂质体的动物活得更长。与接受传统脂质体治疗的小鼠相比,纳米owl治疗的小鼠的肿瘤更小,而且与另一组相比,肿瘤没有扩散到它们的肺部。研究人员说,这种简单有效的方法应该“易于广泛应用,并具有临床翻译的潜力”。 作者获得了国家自然科学基金、上海市科学技术委员会、上海市教育发展基金会“曙光”项目和上海市教育委员会的资助。
  • 《克服癌细胞耐药性的超分子药物》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2018-06-08
    • 克服癌细胞的多药耐药性(multidrug resistance,MDR)可以通过在进入吞噬溶酶体之前使用大分子量ATP结合盒转运蛋白中的药物递送系统和通过颗粒 - 细胞 - 表面相互作用来实现。 然而,这些假设并没有解决肿瘤内瘤内异质性问题。 抗MDR必须与药物靶点的改变,解毒的表现以及改变的增殖有关。 在这项研究中,证明了抗MDR的卓越功效和可持续性是由于ES复合物的稳定性,因为人造酶在用作超分子复合物时具有变构设施。 超分子药物的变构效应可以通过诱导拟合模型来解释,并且可以通过希尔方程的环路传递函数提供稳定的反馈控制系统。