《还原氧化石墨烯(rGO)的宽带光学传感器和温度、缺陷态和量子效率的作用。》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-02-27
  • 我们报告了一种简单且成本效益高的方法,以开发一种基于光学传感器和低温性能分析的自站还原氧化石墨烯薄膜(rGO)薄膜,在此基础上,midgap缺陷状态在关键的传感器参数的调节中起着关键作用。氧化石墨(去)是由改性悍马在250°C的方法和减少热1 h在氩气氛中获得rGO。采用真空过滤法制备自站rGO薄膜。开发的薄膜具有HRTEM、FESEM、Raman、XRD等技术。开发的传感器对635nm照明波长的灵敏度最高,而不考虑工作温度。对于给定的激发波长,光响应的低温研究(123K-303K)揭示了灵敏度和工作温度之间的反比关系。对635nm激光功率密度为1.4 mW/mm2的635nm激光器的灵敏度最高,为49.2%。与灵敏度不同,响应和恢复时间与工作温度成正比关系。电力依赖研究建立了功率密度与灵敏度之间的线性关系,以及一个安全的极限,即样品加热可以延长恢复时间。基于波长的研究表明,所提出的传感器可以有效地从可见光到近红外区域进行操作。据我们所知,这种基于rGO的光学传感器在低温下的性能并没有得到较早的报道。

    ——文章发布于2018年2月23日

相关报告
  • 《氧化石墨烯的化学还原(rGO)》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-15
    • rGO技术及其相关过程的基础是Brodie法,后来成为Hummers法。该技术的变体随后从悍马方法发展而来。 rGO技术以石墨为原料,与硫酸混合作为插层剂,高锰酸钾作为氧化剂。 当这种混合物在高温下加热时,就会产生氧化石墨烯(GO)。氧化石墨烯是一种石墨烯材料,其表面有氧气装饰。氧化石墨烯还可以通过化学和热学的方法还原(去除材料中大量氧含量的过程)为石墨烯,进一步通过超声波、漂洗和分散。 在制备还原氧化石墨烯之前,必须先制备氧化石墨烯。要制备氧化石墨烯,你必须从氧化石墨烯开始,一旦你得到了氧化石墨烯,有三种方法来还原生成还原氧化石墨烯。这些方法可以是热的、化学的或电化学的。 还原方法 氧化石墨烯中氧的还原方法多种多样,包括高温处理(>1000 C)、化学还原和光学或微波辅助还原。 热退火 在热退火过程中,氧化石墨被迅速加热,以触发一氧化碳和二氧化碳气体在石墨烯层之间的突然表达。这一过程将材料分离,生成剥离的石墨烯。 虽然这一过程的优点是不需要另一个还原步骤,但加热过程确实会对石墨烯造成严重损害。据估计,多达30%的石墨烯在热退火过程中被破坏。 另一种方法是将氧化石墨剥离成氧化石墨烯后进行热还原。这一过程需要超过700摄氏度的极高温度,但结果却很好,尽管这一过程需要很高的能量。 由于rGO过程,石墨烯的晶格结构中引入了大量缺陷。此外,该工艺还会导致化学不均匀性,从而影响批次之间的重现性。同样,这种形式的物质也很难描述。 然而,rGO确实有一些好处。单层石墨烯是有可能的,这种材料能够在一定范围的溶剂中很好地分散,也有可能获得高产量。 可伸缩性和市场地位 rGO技术既简单又可高度扩展。尽管有许多不同的技术方法,但其中存在两个问题。首先,这种工艺会对石墨烯晶格造成永久性损伤,其次,它还需要额外的处理步骤,这会增加整个过程的成本。 还原过程没有去除所有附着在石墨烯表面的基团,而且从石墨烯中去除氧会在晶格结构中留下空隙,这对还原过程产生的石墨烯的电学和光学性能有不利影响。 因此,rGO石墨烯在高端电子或光学设备中无法找到应用。例如,rGO石墨烯不具有取代或替代触摸屏中使用的氧化铟锡(ITO)所需的片状电阻。虽然热还原技术可以提高rGO在这一应用中的性能,但考虑到其性能,它并不是ITO的竞争对手。 在还原氧化石墨烯过程中,成本也是要考虑的一个重要因素。氧化和还原步骤的需要增加了与该过程相关的成本,并使rGO在竞争低价值和高产量应用时处于不利地位。这些昂贵的额外步骤也意味着还原氧化石墨烯在许多应用中很难被用作普通形式碳(如炭黑)的替代品。 总结 总的来说,与还原氧化石墨烯过程相关的成本和还原氧化石墨烯的性能特性限制了它在某些应用程序中的成功。随着rGO工艺的发展,大规模生产将降低该工艺的成本。 与所有形式的石墨烯一样,可能不适合某一种应用的材料将非常适合另一种应用。氧化石墨烯(氧化石墨烯)和还原氧化石墨烯(还原氧化石墨烯)是这种动态的完美例子,适用于适用于特定应用的不同形式的石墨烯材料。
  • 《在多层膜中的量子点和纳米孔中,电荷载体输运在有缺陷的石墨烯氧化物中》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-22
    • 石墨烯是一种突破性的二维材料,由于其独特的机械、电气和热性能,在实际应用中有相当大的响应能力。然而,对具有原始石墨烯的大面积区域的报道是一项挑战,而石墨烯衍生品也被用来生产混合材料和复合材料,以满足新开发的需要,同时考虑到使用不同方法处理大面积区域。对于电子应用来说,研究石墨烯衍生物及其相关复合材料的电性质,以确定原始石墨烯的特征二维电荷传输是否被保留,有很大的兴趣。在此,我们报告了一项系统的研究,研究了用聚苯乙烯磺酸钠(PSS),以GPSS命名的氧化石墨烯氧化物化学功能化的电荷传输机制。GPSS可以作为量子点(QDs)或纳米粒(NPLs)的产物,通过多层(LbL)的聚合(LbL)来制备出具有分子水平控制的石墨烯纳米复合材料。电流电压(i - v)测量表明,LbL纳米结构在金交叉的电极上有了一丝不苟的增长,以一种空间电荷限制的电流为主导,这种电流由一种可变距离跳跃机构控制。2 d intra-planar传导在停靠观察纳米结构,导致有效的电荷载流子迁移率(μ)4.7厘米2 V−1−量子点1和34.7厘米2 V−1 s−1不良贷款。LbL组件和材料的尺寸(QDs或NPLs)在LbL纳米结构内对电荷载体的流动性进行了微调和控制。这样的2 d电荷传导机制和高μ值在一个联锁多层组装含有石墨烯纳米复合材料的极大兴趣有机设备和功能化的接口。 ——文章发布于2017年11月15日