《植物所揭示葡萄白藜芦醇合成反馈调节机制》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-03-30
  • 白藜芦醇( resveratrol ,缩写为 Res )属于多酚化合物中的芪类化合物,在植物中主要具有抗生物胁迫的作用。近年研究表明,白藜芦醇具有防治癌症和心血管疾病的作用,因此受到学术界和企业界的高度重视。自然界中,只有葡萄等少数植物能够合成并积累白藜芦醇,葡萄已成为市场上白藜芦醇的重要来源。然而,目前人们对葡萄白藜芦醇合成的分子调控机理知之甚少,仅知道转录因子 VvMYB14 和 VvMYB15 可以直接调控白藜芦醇生物合成的关键酶——芪合酶( stilbene synthase , STS )基因的转录。   

    中国科学院植物研究所李绍华研究组长期致力于葡萄白藜芦醇合成调控机制的研究。研究人员发现,葡萄 WRKY 基因家族成员VvWRKY8 在葡萄响应 UV-C 辐射的过程中,与VvMYB14 和VvSTSs 高度共表达;在葡萄中瞬时和稳定过表达VvWRKY8 ,均可导致葡萄芪合酶基因成员VvSTS15/21 和VvMYB14 转录水平下降、白藜芦醇积累减少。进一步研究发现, VvWRKY8 不能直接转录调控VvSTS15/21 和VvMYB14 ; VvMYB14 通过其 N 端与VvSTS15/21 启动子结合并转录激活其表达,不能直接转录调控VvWRKY8 表达;VvWRKY8 通过其 N 端与 VvMYB14 的 N 端蛋白互作,从而抑制 VvMYB14 诱导的VvSTS15/21 转录。研究人员还发现,外源白藜芦醇可以导致葡萄悬浮细胞中VvWRKY8 表达升高、VvMYB14 和VvSTS15/21 表达降低。   

    该研究结果揭示了葡萄白藜芦醇合成存在 VvMYB14-VvSTS15/21-Res-VvWRKY8 的反馈调节机制,对于深入研究葡萄白藜芦醇合成精细调控机制具有重要意义,同时对利用生物工程方法生产白藜芦醇或培育高白藜芦醇含量葡萄品种具有重要价值。   

    该成果于近日正式发表在国际学术期刊 Journal of Experimental Botany 。编辑部在同期配发了题为 Regulation of resveratrol biosynthesis in grapevine: new approaches for disease resistance? 的评论文章,给予该研究高度评价。李绍华研究组博士研究生姜金铸为论文的第一作者,李绍华和王利军为共同通讯作者。该研究得到国家自然科学基金面上项目和宁夏回族自治区葡萄育种专项的资助。

相关报告
  • 《植物所等揭示全球气候变化下葡萄科植物生存策略的转变机制》

    • 编译者:季雪婧
    • 发布时间:2024-10-28
    •     在全球气候变化背景下,研究生物多样性的形成与变化动态至关重要。面对变化的环境,植物或迁移至新分布区以维持原有生态位,或原地演化出新性状来适应新环境,或兼顾两种策略。传统的生态位保守性假说认为,物种更倾向于保留祖先生态位,即“迁移”可能比“演化”更容易。有研究认为,“演化”策略在植物响应环境变化过程中同样重要,两种策略可能在多种内外部因素的复杂作用下相互转变。然而,在漫长的地质历史时期,这两种策略的动态转变如何发生及其背后的机制尚不清楚。葡萄科植物现有18属近1,000个物种,主要分布于全球热带和亚热带地区,在形态和生境上均呈现出高度多样性,是研究植物多样化与生存策略转变机制的理想类群。中国科学院植物研究所联合美国史密森研究院国家自然历史博物馆,基于世界范围内的广泛采样,构建了目前取样最全的葡萄科系统发生树。这一葡萄科系统发生树共495种,物种覆盖率达到52%。该研究通过多样化分析,重建物种分布区、生境和性状,结合化石、古地质及古气候的证据,揭示了葡萄科植物在不同地质历史时期的多样化进程和生存策略转变机制。研究显示,现存葡萄科物种的最近共同祖先可追溯至白垩纪晚期,此后由亚洲逐步扩散至全球。渐新世后,崖爬藤属、葡萄瓮属、葡萄属和酸蔹藤属的多样化速率上升,这与上述类群生境变化和适应性状出现的时间相符。研究通过分析各地史时期的扩散事件、生境转变和关键性状演变发现,始新世时期葡萄科物种更多通过“迁移”策略应对气候变化;渐新世采用“迁移”策略的类群下降;中新世后大量新生境的出现促使“演化”策略成为主导。这表明植物在演化过程中并不总是遵循生态位保守原则。因此,研究应谨慎使用相关理论和假设。     该研究将类群关键性状演化、生物地理扩散与环境变化相结合,剖析了葡萄科植物生存策略的转变模式和机制。这对提升关于生物多样性形成与变化动态的认知,预测植物如何响应未来环境变化具有科学价值。
  • 《西班牙科学家揭示植物抵御真菌感染的关键机制》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 世界范围内,每年由于真菌感染产生的作物损失至少达1.25亿吨,包括水稻、小麦、玉米、大豆和马铃薯,这些粮食作物足够养活6亿人。真菌不仅在作物生长阶段、在农作物收割后的阶段,包括农产品存储期间、运输过程中或是在消费者手中等,都会带来大量损失。另外,一些真菌产生的霉菌有毒物可导致人类和动物患病、甚至死亡。农民使用真菌杀剂来防治真菌感染,但是不能保证100%有效,并且消费者需要的是不含杀虫剂的作物产品。 同人类相类似,植物也进化出防御机制来保护自身免受真菌侵袭。目前,西班牙农业基因研究中心(Centre for Research in Agricultural Genomics,CRAG)的一个团队发现了一个叫作“小型类泛素修饰蛋白调节机制(SUMOylation)”,通过调控植物中蛋白的活动从而保护植物免受真菌感染,研究结果已发表在专业期刊《分子植物》(Molecular Plant) 。该研究项目是由西班牙国家研究委员会(CSIC)研究员玛利亚·罗伊斯(Maria Lois)团队和玛利亚·可卡(María Coca)研究团队合作完成。玛利亚·罗伊斯(Maria Lois)是蛋白调节研究专家,玛利亚·可卡(María Coca)是植物真菌感染免疫反应研究专家。据玛利亚·罗伊斯解释,这一研究成果可用来开发作物防治新战略,保护农作物免受真菌感染。 小型类泛素修饰蛋白结合其他分子蛋白(SUMOylation),是诸多分子功能的一个关键过程。例如,动物的某些癌症、神经组织退化疾病就与SUMOylation缺陷有关。就植物而言,小型类泛素修饰蛋白与其他蛋白结合,能够调节植物生长以及植物自身对环境压力的反应。然而,科学家很难对SUMOylation的作用进行研究,因为完全阻滞该调节进程会在种子期造成植物死亡。为了克服这些问题,玛利亚·罗伊斯研究小组利用基因工程技术在植物中引入一个蛋白质小片段来部分阻滞SUMOylation,并且保证植物可正常生长。通过这一手段,研究人员发现,SUMOylation受到破坏的植物表现得更容易受死体营养型真菌的感染,如灰葡萄孢菌(Botrytis cinerea)和短小芽孢杆菌(Plectosphaerella cucumerina)。这两种真菌会造成植物死亡,然后以坏死的组织为食。灰葡萄孢菌是一种地域分布广泛的真菌,能感染各种植物。例如,这种真菌会致使酿酒用葡萄得贵腐病和灰霉病,影响葡萄酒质量。短小芽孢杆菌是一种重要的研究模型真菌,可感染诸如甜瓜之类的蔬菜作物。 另外,研究人员观察到,受真菌感染植物中的小型类泛素修饰蛋白很快减少了,表明作为致病机制的一部分,死体营养真菌能够使小型类泛素修饰蛋白减少。 玛利亚·罗伊斯研究团队设计的部分阻滞SUMOylation策略是整个研究项目的关键,科学家期望该策略能开展得更为深入。这一新方法能够帮助科研人员更好地了解受小型类泛素修饰蛋白调控的各种分子进程。更重要的是,这是一个很容易就能在重要的农作物上应用的工具,即便是那些基因很复杂的作物,如小麦。 小型类泛素修饰蛋白调节机制(SUMOylation)研究工作为开发更具针对性的真菌杀剂打开了新的突破口。实际上,玛利亚·罗伊斯已经开始将其在植物小型类泛素修饰蛋白研究中获取的知识应用于人类健康领域。这些研究活动获得了欧洲研究协会(ERC)和加泰隆尼亚政府(Government of Catalonia)的支持。 (编译 李楠)