《Nature | 剪接体分解的启动机制》

  • 编译者: 李康音
  • 发布时间:2024-06-29
  • 2024年6月26日,维也纳生物中心等机构的研究人员在 Nature 期刊发表了题为Mechanism for the initiation of spliceosome disassembly的文章。

    前核糖核酸的剪接需要被称为剪接体的多质子核糖核蛋白复合物的组装、重塑和解体。最近的研究揭示了剪接体的组装和重塑催化作用,但其分解机制仍不清楚。

    该研究报告了线虫和人类末端内含子片段剪接体的 2.6 至 3.2 ? 分辨率冷冻电子显微镜结构以及生化和遗传数据。该研究结果揭示了四种分解因子和保守的 RNA 螺旋酶 DHX15 如何启动剪接体的分解。分解因子探测剪接体的内外大表面,以检测连接的 mRNA 的释放。然后,其中的两个因子(TFIP11 和 C19L1)和三个一般剪接体亚基(SYF1、SYF2 和 SDE2)对接并激活催化 U6 snRNA 上的 DHX15,从而启动分解。这样,U6 就控制了前 mRNA 剪接的开始5 和结束。

    综上所述,该研究结果解释了典型剪接体解体的分子基础,并为理解一般剪接体 RNA 螺旋酶控制和异常剪接体的抛弃提供了一个框架。

相关报告
  • 《Nature | 揭示跨外显子转化为跨内含子剪接体分子机制》

    • 编译者:李康音
    • 发布时间:2024-05-26
    • 2024年5月22日,四川大学华西医院生物治疗全国重点实验室张祯威研究员与德国马克思普朗克多学科交叉所Holger Stark,Reinhard Lührmann课题组合作在Nature上在线发表了题为Structural insights into the cross-exon to cross-intron spliceosome switch的研究成果,揭示了跨外显子剪接体转化为跨内含子剪接体的具体分子机制,并提出了全新的人类剪接体组装模型,挑战了基于酵母研究的经典认知。 该研究首先纯化了跨外显子组装的剪接体,并通过单颗粒冷冻电镜手段揭示了其三维结构。研究者发现跨外显子组装的剪接体停留在了包含所有5个snRNP的pre-B复合体阶段。该复合体除了U1snRNP的位置不同以外,其中的U2-tri-snRNP部分与先前发表的跨内含子组装的pre-B复合体相似。通过外源引入包含5端剪接位点的低聚核苷酸(5'ss oligo),该跨外显子pre-B复合体可被转化为类似跨内含子的B复合体(B-like 复合体),再次证明跨外显子和跨内含子和组装的pre-B复合体在结构和功能上具有相似性。基于这一发现,作者在体外重构了pre-B到B-like复合体的中间状态,并通过单颗粒冷冻电镜手段揭示这些中间状态的三维结构。这五个全新的剪接体中间状态完整揭示了由跨外显子pre-B复合体转变为跨内含子B复合体的分子过程。 出乎意料的是,在研究过程中,研究人员发现跨外显子组装的pre-B复合体可以形成前所未见的二聚化状态,且在二聚化剪接体中,每个pre-B复合体可以与另一个pre-B复合体的U1 snRNP相结合,并通过依赖ATP的方式,稳定结合彼此的5端剪接位点(5' splice site, 5'ss)。该结果表明了在跨外显子到跨内含子转变过程中,pre-B复合体中的tri-snRNP可以直接和一个结合5’ss的U1snRNP互作,并转化为跨内含子剪接体。 基于此,研究者提出了全新的人类剪接体组装模型。首先,外显子序列招募SR蛋白并促进外显子两端U2和U1 snRNP的结合,形成跨外显子复合体。随后tri-snRNP被招募到U2 snRNP,形成跨外显子pre-B复合体。该复合体具有完整组装的U2-tri-snRNP部分,并准备结合U1 snRNP。而剪接产物取决于随后被tri-snRNP结合的U1 snRNP。1. 若内含子5‘端的U1 snRNP被结合,跨外显子复合体转变为跨内含子复合体,移除内含子介导经典剪接;2. 若更为上游外显子的U1 snRNP被结合,跨外显子复合体转变为跨内含子复合体,并跳过中间的外显子;3. 若下游的U1 snRNP被结合则介导反向剪接,形成环状RNA (circRNA);4. 若来自另一个转录本的U1 snRNP被结合,则介导反式剪接 (trans-splicing)。 总之,该研究提出全新的人类剪接体组装模型将经典剪接、可变剪接、反向剪接、反式剪接这些看似不相关且复杂的剪接调控机制统一到了同一框架下,为研究pre-mRNA剪接调控研究提供了新的范式。
  • 《Nature | latrophilin-3 的选择性剪接控制突触形成》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-22
    • 2024年1月17日,斯坦福大学Thomas Südhof 团队在 Nature 期刊发表了题为Alternative splicing of latrophilin-3 controls synapse formation的研究论文,揭示了突触形成的核心机制。 突触形成是大脑神经回路组装的核心。突触形成至少部分地受到组织突触前膜和突触后膜粘附分子之间的跨突触复合物的控制。已知多个粘附分子定位于突触前膜或突触后膜,但关于突触粘附分子如何组装突触尚缺乏具体机理。 在突触粘附分子中,Latrophilin-3(Lphn3)在海马区Schaffer collateral突触的建立中发挥着重要作用。Lphn3是一种突触后膜粘附蛋白,其属于粘附性GPCR家族 ,并可与突触前膜teneurin 和FLRT粘附分子结合 。已知Lphn3在突触形成中的功能需要其胞外FLRT和teneurin结合序列及其胞内区域,包括其Gα蛋白结合序列,但尚不清楚Lphn3为何既是粘附分子又是GPCR 。在细胞信号传导实验中,多种Gα蛋白与Lphn3偶联。然而,很多问题未得到解答。哪种Gα蛋白在生理上介导Lphn3依赖的突触组装?Gα蛋白信号传导本身是否构成Lphn3诱导的突触形成的核心机制?突触后膜Lphn3与突触前膜配体的结合如何诱导突触形成?此外,已知突触后膜支架蛋白通过相分离形成凝聚物,但其与跨突触复合物之间的关系知之甚少。 在这项研究中,研究团队发现, Lphn3 mRNA转录经历了多处选择性剪接。由此产生的蛋白质变体与不同的Gα蛋白质偶联。其中,与GαS耦合的变异体(诱导cAMP产生)是大脑中主要的剪接变异体,对于海马突触的形成至关重要。神经元活动的增强促使Lphn3的选择性剪接转变为有利突触形成的GαS耦合变体。 引人注目的是,只有GαS偶联的Lphn3剪接变体才能将突触后膜支架蛋白募集到跨突触连接处。这种招募需要将Lphn3胞质尾端结合到相分离的突触后膜蛋白支架的表面上。突触前膜配体teneurin和FLRT协同促进被Lphn3包裹的突触后膜支架蛋白凝聚物形成更大的复合物,解释了跨突触相互作用如何诱导突触后膜复合物的组装。Lphn3的突触功能及其募集相变突触后膜蛋白支架的能力都需要其末端PDZ结合序列与Shank支架蛋白的相互作用。 这篇论文的数据阐释了突触形成的核心机制,其中 GαS 信号传导、相分离和跨突触配体结合在突触后膜复合物的组装中协同作用。该通路由 Lphn3 的选择性剪接控制,从而能够通过神经元活动精确调节突触形成。