《遗传发育所揭示水稻花器官稳态发育的分子机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 丁倩
  • 发布时间:2016-07-07
  • 植物固着生长,因此为了适应多变环境而演化出了多种机制来调节自身的生长发育。在不同的环境条件下植物的营养生长呈现出很高的差异性,即表型可塑性,而生殖生长如花器官发育则呈现出非常稳定的特性,即表型稳态性。但目前控制花器官稳态发育的分子机制还很不清楚。

    中国科学院遗传与发育生物学研究所薛勇彪研究组和钱文峰研究组合作通过对水稻eg1突变体的研究,发现eg1突变体在不同的生长环境下花器官呈现显著的表型差异,表明EG1的突变影响了水稻花器官的稳态发育。生理生化实验表明EG1是一个主要在线粒体定位的脂酶,其转录水平、蛋白稳定性和酶活性都具有高温依赖特性。重要的是EG1能够抑制大量下游基因在转录水平对环境的响应,其中包括一系列花器官特性决定基因。进一步的遗传分析证明花器官决定基因OsMADS1, OsMADS6和OsG1作用于EG1的下游来保证花器官的稳态发育。这些结果表明EG1通过介导一条高温依赖的线粒体脂酶途径来保证花器官决定基因的正常表达,进而促进在不同环境中花器官的稳态发育。这一发现揭示了一个调控植物花器官发育的新机制。

  • 原文来源:http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006152
相关报告
  • 《遗传发育所揭示移动的ARGONAUTE 1d调控水稻低温育性新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •   与动物中piRNA类似,单子叶植物生殖细胞中产生大量21-和24-nt phasiRNA参与雄配子发育,特别是极端温度下的育性调控,而有关phasiRNA的合成机制及功能调控却知之甚少。   近日,中国科学院遗传与发育生物学研究所研究员曹晓风研究组在Science China Life Sciences上,发表了题为Mobile ARGONAUTE 1d binds 22-nt miRNAs to generate phasiRNAs important for low-temperature male fertility in rice的论文,揭示了OsAGO1d可从花药壁细胞移动到花粉母细胞,通过结合22-nt miRNA介导phasiRNA的合成以维持水稻低温育性。   前期研究发现,phasiRNA的合成需要22-nt miR2118和miR2275与AGO蛋白形成沉默复合体介导PHAS转录本起始切割,随后在RDR6及DCLs的加工下,产生成熟的21-和24-nt phasiRNA (Johnson et al., 2009;Song et al., 2012a;Song et al., 2012b;Teng et al., 2020)。其中,具有5′C特征的21-nt phasiRNA可装载进入AGO蛋白家族的MEL1中参与减数分裂调控(Nonomura et al., 2007;Komiya et al., 2014),而参与phasiRNA产生和发挥功能的其他AGO蛋白尚且未知。   研究发现,水稻OsAGO1d受低温诱导表达,而OsAGO1d敲除突变株在低温下绒毡层降解延迟,导致雄性不育。科研人员通过RNA免疫共沉淀实验,发现OsAGO1d主要结合带有5′U 的21-nt phasiRNA、miR2118及miR2275家族成员。研究通过全基因组小RNA测序发现OsAGO1d介导了近千个PHAS位点phasiRNA的产生。RNA原位杂交结果显示,OsAGO1d主要在花药壁细胞中转录,而免疫荧光与免疫金标的结果则显示OsAGO1d蛋白更多的在花粉母细胞中积累,表明OsAGO1d蛋白质可从花药壁细胞移动到花粉母细胞中。为探究OsAGO1d的移动对phasiRNA合成的重要作用,科研人员通过分析依赖于OsAGO1d的phasiRNA组织表达及在花粉母细胞中的分布比例,揭示OsAGO1d在花药壁细胞中结合miR2118从而负责21-nt phasiRNA的产生,而OsAGO1d移动到花粉母细胞中主要结合miR2275产生24-nt的phasiRNA。该研究解析了OsAGO1d介导phasiRNA代谢在低温育性调控的重要作用,其可移动的特性精细调控了不同长度phasiRNA的时空分布,为花药发育过程中花药壁与花粉母细胞之间信号交流奠定了新的物质基础。   研究工作得到国家自然科学基金、中国科学院战略性先导科技专项及中国科学院前沿科学重点研究计划的支持。
  • 《遗传发育所水稻小麦穗发芽研究获进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-13
    •       种子休眠性是指种子在适合它生长的条件(温度、水分和氧气等)下仍不能萌发的现象,是多数高等植物所共有的适应性性状。作物驯化过程更多考虑高产、优质、抗病虫及耐受逆境性状,同时保证在生产中种子具有一致的萌发特性,而忽视了对种子适度休眠的保留,导致较多作物如水稻、小麦在生产上大面积遭遇严重的穗发芽问题,即种子成熟期遇潮湿气候在收获前出现穗上籽粒萌发的现象,造成了在收获的最后时刻面临近乎绝收的经济损失。近年来,随着全球气候变暖,水稻、小麦等作物在成熟后期频繁遭遇连阴天气,穗发芽灾害发生较为普遍。此外,在作物制种后期同样会遭遇频繁的连阴雨天气,穗发芽对制种产业造成损失,且其影响往往延伸到下季播种。因此,找到水稻、小麦等控制种子休眠的关键基因,阐明种子休眠调控的分子生理机制,挖掘其优良等位变异,对解决水稻等作物穗发芽灾害至关重要。   然而,种子休眠性是颇为复杂的农艺性状,受到大量数量性状位点的调控,并受到多种环境因素的显著影响。种子休眠性关键调控基因的克隆较为困难,生产上缺乏实用的主要基因资源。针对这一现状,中国科学院遗传与发育生物学研究所储成才团队通过构建可稳定检测到休眠控制位点区域的高密度染色体单片段代换系群体,在强休眠水稻品种Kasalath中克隆到一个控制水稻种子休眠的关键基因SD6,并证实了SD6负调控水稻种子休眠性。通过筛选SD6互作蛋白,研究发现了另一水稻转录因子ICE2正调控水稻种子休眠性。   通过分子生物学、遗传学及生物化学等实验,科研团队揭示了SD6和ICE2均直接靶向脱落酸(ABA)8′-羟化酶基因ABA8ox3启动子上,两者分别识别启动子上的G-box基序或E-box基序从而实现对同一靶基因的反向调控。SD6和ICE2通过拮抗调控另一个转录因子OsbHLH048间接地调控了ABA的关键合成调控基因即9-顺式-环氧类胡萝卜素双加氧酶基因NCED2。这揭示了一个新的激素平衡调控范式,即拮抗的转录因子对可通过直接地调控ABA的代谢,并间接地调控ABA的合成,从而实现ABA含量的及时高效调控,以切换种子的休眠与萌发。   种子休眠性既受遗传调控,又可通过种子所处环境来调节。温度是影响种子休眠和萌发主要的环境因子。温暖环境通常能加速解除种子休眠,促进种子萌发,而低温则使种子维持休眠状态。这种感知外界环境的能力可以使种子度过不利环境条件,如冬季低温等。储成才团队发现SD6-ICE2分子模块具备感知周边环境温度调控种子休眠性的特征:在常温条件下,SD6基因维持高水平表达,发挥功能,而ICE2基因表达则受到明显抑制,促进种子萌发;在低温条件下,SD6基因表达则受到明显抑制,ICE2基因表达量上调,使种子维持在休眠状态。这表明SD6-ICE2通过感知外界环境温度变化此消彼长,动态控制种子中的ABA含量,从而调控种子休眠强度以适应自然气候更替。这解释了种子休眠性是如何作为一种适应性策略来避免不适宜的条件。   研究显示,含有SD6强休眠等位的近等基因系在大田表现出优异的穗发芽抗性,暗示该自然变异位点可用于优质水稻主栽品种的休眠性常规育种改良。同时,通过基因编辑技术对多个水稻易穗发芽主栽品种的SD6基因进行改良,该研究证实在不同水稻品种背景下改良的材料在收获期遭遇连绵阴雨天气的情况下,其穗发芽情况显著改善。高彩霞团队对小麦品种科农199的TaSD6基因进行改良,也可以大幅提高小麦穗发芽抗性,表明SD6基因在水稻和小麦中控制种子休眠性的功能是保守的,即SD6在水稻和小麦穗发芽抗性育种改良中均具有重要应用价值(如图)。   12月5日,相关研究成果在线发表Nature Genetics上(DOI:10.1038/s41588-022-01240-7)。