《如何使基因编辑工具CRISPR工作得更好》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2018-11-30
  • 近年来最重大的科学进展之一是发现和发展了利用一种称为CRISPR的快速且负担得起的技术对生物进行基因改造的新方法。现在,德克萨斯大学奥斯汀分校的科学家们说,他们已经发现了一种容易升级的技术,这种技术可以导致更精确的基因编辑,并提高安全性,从而为基因编辑用于人类打开足够安全的大门。

    分子生物学家小组发现了确凿的证据,目前在CRISPR基因编辑中使用的最流行的酶,也是第一个被发现的酶Cas9,它比使用较少的CRISPR蛋白(称为Cas12a)具有更低的有效性和精确性。

    因为Cas9更可能编辑植物或动物基因组的错误部分,破坏健康功能,所以科学家在8月2日发表在《分子细胞》杂志上的研究报告中提出,转用Cas12a将导致更安全和更有效的基因编辑。

    “总体目标是找到自然界给我们的最好的酶,然后使它变得更好,而不是采用第一个通过历史偶然发现的酶,”分子生物科学的助理教授和这项研究的合著者Ilya Finkelstein说。

    科学家们已经开始使用CRISPR,这是一种细菌用来抵御病毒的自然机制,来更多地了解人类基因,转基因植物和动物,并发展这种由科幻小说激发的进步,如含有抗脂肪小鼠基因的猪能导致瘦培根。许多人期待CRISPR能够为人类疾病提供新的治疗方法,并作物拥有更高产量或抵抗干旱、害虫。

    但是,在自然界发现的CRISPR系统有时会瞄准基因组中的错误位点,这应用于人类可能是灾难性的,例如,未能纠正遗传疾病,而是将健康细胞转化为癌细胞。

    以往的研究表明Cas12a比Cas9好,但以前的研究尚不明确。这项最新研究中,研究人员说,通过显示出Cas12a是比Cas9更精确的基因编辑刀结束了案例,并解释原因。

    该研究小组由研究生Isabel Strohkendl和Rick Russell带领,发现Cas12a的选择性更强,因为它像维可牢一样与基因组靶结合,而Cas9更像超级胶一样与靶结合。每种酶都携带一串用RNA编写的基因代码,与病毒DNA中写入的一串目标基因代码相匹配。当它碰到一些DNA时,酶开始试图通过形成碱基对来与它结合——从一端开始,然后沿着它的方向工作,测试一侧的每个字母(DNA)与另一侧相邻的字母(RNA)匹配得如何。

    对于Cas9,每个碱基对紧密地粘合在一起,就像一块超级胶水。如果每边的前几个字母匹配得很好,那么Cas9已经与DNA强结合了。换言之,Cas9关注基因组目标中的前七或八个字母,但是随着这个过程的继续就关注较少,这意味着它很容易忽略稍后在过程中的失配,这将导致它编辑基因组的错误部分。

    对于Cas12a来说,它更像是一个尼龙搭扣。在沿途的每一点联系相对较弱。沿着带子的两边是一个很好的匹配,保持足够长度进行编辑使其联接到一起。这使得它更可能只编辑基因组的预期部分。

    “它使碱基对的形成过程更加可逆,”Russell说。“换句话说,Cas12a在继续之前对检查碱基对做得更好。在七或八个字母之后,Cas9停止检查,而Cas12a继续检查到大约18个字母。”

    研究人员说,Cas12a还不是完美的,但是研究还建议了进一步改善Cas12a的方法,也许有一天实现创造“精密手术刀”的梦想,一种本质上防错的基因编辑工具。

    Finkelstein说:“总体来说Cas12a更好,但是有些地方Cas12a仍然对RNA和基因组靶标之间的某些错配有令人惊讶的盲目。”“因此,我们的工作为进一步改进Cas12a指明了一条清晰的道路。”

    研究人员目前将这些见解用于设计改进Cas12a的后续项目。

    该研究的其他合作者是研究生James Rybarski和前本科生Fatema Saifuddin。

    这项工作得到了国立普通医学科学研究所和韦尔奇基金会的资助。

  • 原文来源:http://news.agropages.com/News/NewsDetail---27150.htm
相关报告
  • 《CRISPR的未来:五种基因编辑将改变世界》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:yangr
    • 发布时间:2018-02-05
    • 在过去几年里,CRISPR是科学界耳熟能详的一项基因编辑技术,一直占据着新闻媒体的头条。目前,专家预测称,这种基因编辑技术将改变我们的星球,改变我们生活的社会和周围的生物。与其他基因编辑工具相比,CRISPR(更专业的术语是CRISPR-Cas9)非常精准、廉价、易于使用,并且非常强大。 CRISPR技术的未来 据悉,CRISPR技术是在上世纪90年代初发现的,并在7年后首次用于生物化学实验,迅速成为人类生物学、农业和微生物学等领域最流行的基因编辑工具。 科学家还在探索如何利用CRISPR技术使世界变得更好的早期阶段,当然,改变DNA的能力(生命本身的源代码),将带来许多伦理问题和一些担忧。还有一些令人兴奋的科学应用,如何更有效地使用这种革命性技术,以及可能减缓或阻止这些技术发挥其全部潜能的障碍。 1、CRISPR技术可以纠正导致疾病的基因错误 肥厚型心肌病(HCM)是一种心脏疾病,影响着全球0.2%的居民,该患者群体将承受巨大的痛苦,而且该疾病会致命。一些显性基因的突变导致心脏组织变粘稠,这可能导致胸痛、虚弱,严重的情况下会心脏骤停。由于近年来医学技术快速发展,肥厚型心肌病患者的平均预期寿命现已接近普通人群的寿命,但如果不及时进行治疗,会引发危及生命的情况。 但未来有一天,我们也许可以通过基因编辑来彻底治愈这种疾病。2017年夏季,美国俄勒冈健康与科学大学的科学家使用CRISPR技术删除可生育人类胚胎中一个缺陷基因,这项研究为科学家们带来了希望。他们在胚胎受精后18小时内注入结合CRISPR-Cas9技术机制的54个胚胎,其中36个胚胎并未显示任何基因突变(实际上没有形成这种疾病),13个胚胎部分没有出现基因突变(遗传肥厚型心肌病的概率为50%)。 在54个胚胎中仅有13个出现非目标基因突变和嵌合体(mosaics),这里的嵌合体是指一些细胞发生了相应的变化,意味着一小部分人会基因变异。 为了进一步减少这些变化,研究人员进行了另一项实验,他们在胚胎受精时直接对胚胎中相同的基因进行了校正。结果发现仅有一个嵌合体,这是一个令人印象深刻的实验结果。使得这项研究比其他同类研究更有效(2015年中国科学家进行的一项临床试验中,无法消除嵌合体的可能性)。 该研究报告第一作者、俄勒冈健康与科学大学的研究员舒克拉特?米塔利波夫(Shoukhrat Mitalipov)说:“通过使用这项技术,我们有可能减轻这种遗传性疾病对家庭造成的负担,最终影响全人类。”在胚胎发育早期阶段发现这种基因,可以减少或者消除患者生命后期的治疗需求。 尽管一些干细胞科学家置疑是否这几十个基因突变真实有效,但这项研究帮助科学家更好地理解CRISPR技术的有效性。此外,肥厚型心肌病研究报告合着作者表示,我们有兴趣将这项技术应用于降低乳腺癌风险的特定基因突变(BRCA1 和BRCA2)。 这意味着,科学家们知道改变人类胚胎的遗传代码可能会产生意想不到的后果,如果CRISPR技术在错误的地方进行了修改,改变或者移除健康的基因,将会怎样?这对患者会有什么影响? 在世界上的一些地方,例如:中国,科学家们可以很大程度不受约束地对人类胚胎进行实验,但在美国、加拿大和英国,情况却并非如此。 在美国,当前食品和药物管理局(FDA)并未考虑利用公共资金来研究那些可以遗传的基因(俄勒冈州研究人员的研究工作并不是以移植为目的,该研究是由私人提供资金)。在加拿大,编辑基因遗传给后代,是一种犯罪行为,最高刑罚可判处10年监禁。在英国,2016年,人类受精与胚胎管理局授权伦敦一支科学家小组获得编辑人类胚胎基因的许可,英国科学家希望这将成为一个先例,并打开未来基因编辑应用的大门。 2、CRISPR技术可消除导致疾病的微生物 虽然艾滋病治疗是从感染致命杀手病毒转变为健康状态,但是科学家仍没有找到有效的解决办法。这种状况可能会随着CRISPR技术的发展而改变,2017年,中国一支研究小组通过复制一种变异基因,有效地阻止病毒进入细胞,从而增大了老鼠对艾滋病毒的抗性。目前,科学家只在动物身体进行此类实验,但有理由认为同样的方法也适用于人类,这种基因突变可以增强人类对艾滋病毒的免疫力。 2018年7月开始,另一项基因编辑实验将在中国进行,并将尝试使用CRISPR技术来破坏人类乳突瘤病毒(HPV)的基因,并有效地摧毁病毒,据悉,人类乳突瘤病毒已被证实可促使宫颈癌肿瘤生长。 在一项略有不同的实验中,美国北卡罗来纳州的科学家使用CRISPR技术设计噬菌体,这是一种能在细菌内感染并复制自身的病毒,从而杀死有害细菌。自20世纪20年代以来,噬菌体已被用于临床实验,治疗细菌感染。但是通过自然途径采集它们是很困难的,因为当时缺乏对噬菌体的认知,并且无法预测结果,同时,抗生素市场的不断增长使得噬菌体的应用逐渐不受欢迎。 甚至在今天,一些研究人员仍忧心忡忡,他们认为大量噬菌体侵入人体会引发免疫反应,或导致耐抗生素细菌对噬菌体产生抗药性,否则就会消灭它们。 尽管人体试验尚未开始,但是研究人员对使用CRISPR技术设计噬菌体保持乐观态度,因为它们是一种经过验证的、安全的治疗细菌感染方法。事实上,在2017年的一项实验中,研究人员使用CRISPR技术设计噬菌体拯救感染耐抗生素传染病的老鼠生命。 3、CRISPR技术可以复活某些物种 2017年2月,哈佛大学遗传学家乔治·丘奇(George Church)在美国科学促进协会年会上发表了一项令人惊讶的声明,他表示自己带领的研究团队还有两年时间就能成功培育出大象-猛犸杂交体胚胎。 丘奇在接受《新科学家》杂志记者采访时说:“我希望恢复多毛猛犸能够阻止全球气候转暖,猛犸需要冻土带生活环境,土地上存在着厚厚积雪和冷空气。” 目前,丘奇和他的团队希望利用CRISPR技术将亚洲象(一种潜在被拯救的濒危物种)和猛犸的基因物质结合在一起,猛犸的基因物质样本是通过西伯利亚冰冻毛团球中的DNA提取的。通过添加猛犸基因到亚洲象体内,最终该生物体将具有猛犸的普遍特征,例如:长毛,在寒冷气候下可起到保暖效果。最终目标是将这个杂交胚胎植入大象体内,并培育至分娩时期。 这项研究颇有希望,但是一些专家认为,丘奇的时间计划表过于乐观。即使研究人员能够培育功能完全的杂交体胚胎,像他预想的那样,在一个人造子宫中生长发育,仍是一个需要克服的障碍。当然,丘奇的实验室现在能够在人造子宫中培育出一个妊娠期一半的老鼠胚胎,大约发育10天左右。但目前并不能保证未来几年之内能够见证猛犸的诞生。 4、CRISPR技术可培育更健康的新型食物 CRISPR基因编辑技术被证实在农业研究领域具有发展前途,美国纽约冷泉港实验室科学家使用CRISPR工具能够增大番茄产量,该实验室开发一种方法能够编辑基因,确定番茄的大小,分枝结构以及最大产量时番茄的外形。 冷泉港实验室扎卡里·利普曼(Zachary Lippman)教授在一篇新闻稿中称,农作物的每个特征能够以电灯变光开关方式进行控制,目前我们可以使用原生DNA,增强其自然属性,这将帮助我们突破产量障碍。 满足饥饿人群的高产农作物仅是一个开始,科学家希望CRISPR技术能够帮助摆脱转基因生物(GMOs)的“污名”。2016年,杜邦先锋农业科技公司宣称,最新培育一种新品种CRISPR基因编辑玉米,因为研究人员改变了它的基因,因此从技术上讲,它并不是转基因农作物。 转基因生物和基因编辑作物之间的区别非常简单,传统的转基因生物是通过植入外来DNA序列进入玉米基因,传递其特征或者属性至未来的有机生物。基因编辑比这种技术更加精确:它对本地基因组的特殊位置基因进行精准改变,经常破坏某些基因或者改变它们的位置,这些都不会引入外来DNA。 虽然转基因生物在消费者之间存在争议,但是杜邦先锋等公司能够更好地认识基因编辑食物。据悉,转基因生物在美国市场已存在几十年时间,科学家未探测到任何风险,尽管转基因生物的最大支持者承认,科学家仍不清楚所有的长期风险。 CRISPR技术编辑的农作物也是如此,当然,科学家将继续测试和评估这些农作物,从而确保不会出现预料之外的副作用,但是这项早期研究仍具有较大的发展前景。最终,CRISPR技术编辑的农作物很可能快速占据全球市场。 杜邦先锋农业科技公司希望到2020年将其“蜡质”基因编辑玉米投入美国市场,据悉,一种基因编辑蘑菇已绕过美国农业部的规定,它并不包含来自病毒或者细菌的外来DNA,并成为首个亮绿灯的CRISPR技术编辑生物体。瑞典现已宣布,将对CRISPR技术编辑农作物进行分类和调控,其方法不同于转基因生物,但是欧盟委员会尚未选定其立场。 5、CRISPR技术将根除地球最危险的害虫 像CRISPR的基因编辑技术可以直接对抗传染性疾病,但是一些研究人员决定通过消除其传播方式来降低疾病的蔓延扩散。美国加州大学里弗赛德分校科学家培育出一种蚊子,它们对于CRISPR技术产生的变化非常敏感,这将便于科学家前所未有地控制传递至后代的生物遗传特征。研究结果显示,通过改变眼睛、翅膀和角质膜发育的基因,最终培育出身体黄色、三眼、无翅蚊子。 通过打乱蚊子基因多个位置的目标基因,研究小组正在测试“基因驱动系统”,来继承传递这些抑制性特征。基因驱动是一种本质上确保基因特征能够继承的方式,通过削弱蚊子的飞行能力和视力,加州大学里弗赛德分校科学家希望大幅降低蚊子在人类传播危险传染病的能力,例如:登革热和黄热病。 其他研究人员通过阻碍蚊子繁殖能力试图消灭它们,2016年,伦敦帝国理工学院一组研究人员使用CRISPR技术来研究携带疟疾的雌蚊的繁殖方式,通过基因驱动系统影响雌性不育特征,使该特征更有可能遗传给后代。 但是干扰蚊子的数量可能会带来无法预料的结果,消灭一个物种,即使是一个看似没有太多生态价值的物种,也会破坏生态系统的微妙平衡。这可能产生灾难性的后果,例如:破坏食物链或者增大疟疾等疾病在完全不同物中之间的传播扩散。 CRISPR技术的未来 目前先进的科学技术表明,CRISPR技术不仅是一种作用极广泛的技术,也被证实具有非常高的精确性,并且可以安全使用。但是许多科技进展仅是刚刚开始,像CRISPR-Cas9这样的基因编辑技术将具有充足的潜力有待挖掘。 技术和伦理障碍是未来基因编辑技术发展必须正确面对的,我们需要种植转基因农作物提高产量、消除基因疾病、或者复活一些灭绝物种,但是我们正在前进的道路上。
  • 《Nat Biotechnol:科学家有望利用酶类测试来改善CRISPR基因编辑工具的精准性和有效性!》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-22
    • 近日,一项刊登在国际杂志Nature Biotechnology上的研究报告中,来自德克萨斯大学等机构的科学家们通过研究开发了一种新工具能帮助科学家们为特定的工作选择最佳的可用基因编辑选项,从而就使得CRISPR技术更加安全、便宜和高效。近年来,CRISPR基因编辑技术在改善人类健康、农业研究等方便表现出了巨大的潜力,但其所面临的挑战在于基因编辑的微妙性质,即不允许出错,为了实现基因编辑,科学家们会使用来自名为CRISPR的自然系统中几十种不同的酶类,随后他们会锁定出问题的DNA序列,紧接着利用酶类作为剪刀来剪断错误序列,使得遗传物质被添加、移除或改变,但这些剪刀或许并不完美,其准确性和有效性会因CRISPR酶和项目而异,而且新的工具会引导新的用户,因此研究者可以为其高风险的基因编辑选择最好的CRISPR酶类。 研究者Steve Jones博士表示,我们设计了一种新方法,其能帮助检测这些不同的CRISPR酶的特异性,其能以一种前所未有的方式来对抗任何引起DNA序列的改变;当CRISPR酶靶向作用了错误的DNA片段后问题就会出现,每一种CRISPR酶在编辑不同的序列上都会存在一定的优缺点,因此研究人员就开始着手开发一种工具来帮助科学家们比较不同的酶类并寻找你一种能发挥用途的最佳酶类。 研究者表示,CRISPR并不是在实验室设计出来的,也并不是人类为了人类而设计的,其是细菌用来抵御病毒感染的天然工具;该工具在医学应用上有着不可思议的潜力,但医学研究的首要原则就是不给患者造成伤害,而科学家们研究的主要目的就是如何让CRISPR变得更加安全。这项研究中,研究人员开发了一种DNA序列文库,并测定了每一种CRISPR酶的准确性,利用酶编辑序列的时间以及编辑序列的准确性,对于某些任务而言,常用的酶类CRISPR-Cas9的效果最好,而在其它实验中,不同的酶类则表现更好。 Hawkins表示,这就像标准化考试一样,每个学生都会参加同样的考试,这样我们就能获得一个比较的基准,本文中,研究人员所开发的新型工具就能帮助他们在第一次尝试中选择最好的酶类,从而就能使得这个过程变得更加有效且便宜;此外,其还能为研究人员提供每个酶类最可能出现错误的地方的相关信息,这样就能节省一定的时间,这项技术也能为研究者降低风险提供一种新方法,其会使得基因编辑技术变得更能够进行预测及可控。