《小规模,大影响:对佛得角群岛海洋生物多样性的新见解》

  • 来源专题:深海资源开发
  • 编译者: 徐冰烨
  • 发布时间:2025-05-21
  • 新研究将全面的跨学科数据集与小规模的物理海洋过程联系起来20.2025年5月/基尔/明德洛。为什么佛得角群岛周围的海洋却生机生,尽管位于大西洋营养最贫乏的地区之一?由基尔GEOMAR亥姆霍兹海洋研究中心领导的一项新研究提供了答案。通过分析二十年的跨学科观测数据,研究团队确定了三个关键的小规模物理过程——涡流、内波和风驱动的岛屿尾迹——这些过程推动了营养物质从深海向地表的上运输。这些局部动态提高了生物生产力,并塑造了该地区海洋物种的分布。这项研究展示了看似混乱的海洋模式如何揭示潜在的生态结构,并为海洋数字孪生的进一步发展铺平了道路。佛得角群岛位于西非海岸外约600公里处,是大西洋开放中部的生物多样性热点。尽管环境普遍为寡營養,但岛屿周围的水域却踵涌动着鲸鱼、海豚和大群鱼类。现在,由GEOMAR Helmholtz基尔海洋研究中心领导的研究人员首次详细解释了为什么这些岛屿在生物学上如此丰富:小规模的物理过程——如海洋涡流、潮汐和风——创造了一个微生境的马赛克,每个微生境都有自己的特征。这些动态条件构成了该地区特殊海洋生物多样性的基础。

    二十年的跨学科数据

    这项研究基于一个异常丰富的数据集,包括34次研究考察的结果、自主水下滑翔机的测量结果、卫星观测和长期海洋停泊的数据。该团队结合了物理、化学和生物参数,以发现电流、营养物质可用性和物种组成之间的关系。

    第一作者、GEOMAR物理海洋学助理教授Florian Schütte博士说:“只有结合所有这些不同的数据源,我们才能识别仅使用物理数据就看不见的模式。”这些发现不仅为生态系统提供了新的见解,还为数字工具奠定了基础,如耦合生态系统模型,甚至是海洋数字孪生——一个集成了大量跨学科数据集的虚拟模型。Schütte解释说:“我们在这里所做的本质上是数字孪生的核心理念:汇集多种观点来理解整个系统。”

    三个关键过程将营养物质带到表面

    从大量数据集中,研究人员确定了三种物理机制,这些机制推动硝酸盐(大西洋浮游植物生长的关键限制营养素)从更深层向上运输到地表,在那里它推动了生物生产力:

    风驱岛唤醒:

    第一个机制涉及“岛屿尾流”——当稳定的东北贸易风被Santo Ant?o和Fogo的高火山峰偏转时形成的漩涡风模式。这些风变形产生了强烈的局部剪切区,进而产生小而高产的水涡。这些涡流增强了水柱中的垂直混合和营养物质的运输。中尺度海洋涡流:

    第二个过程涉及大型海洋涡流——所谓的“中尺度涡流”,直径高达120公里。这些特征经常在西非海岸形成,在那里它们捕获寒冷、营养丰富和更新鲜的水,并将其向西向维德角群岛。当这些涡流遇到岛屿或浅水区时,它们会释放出营养丰富的核心,并增强局部垂直混合。内部潮汐:

    第三个机制是潮汐与岛屿陡峭的水下地形相互作用的结果。佛得角群岛位于一个深水域(佛得角盆地),深度为3000至4000米。在这里,定期的潮汐被海山和岛屿斜坡破坏,产生所谓的内部潮汐波。这些波在不同密度的海洋层中振荡,可以传播很远的距离——或者在遇到陡峭的斜坡或浅水区时会破裂,就像地表海浪在海滩上破碎一样。当内波破裂时,它们释放出大量能量,极大地增加了垂直混合。这种影响在Santo Ant?o以南尤为强烈,GEOMAR在那里记录了有史以来测得的最高混合率——伴随着流动速度是原始深海潮汐流的几倍。

    关键见解:物理学决定了谁住在哪里

    Schütte博士解释说:“所有这些过程都将硝酸盐带入阳光照射的表层,在那里刺激浮游植物的生长——这是所有海洋生物的基础。”这些生产区表现出多达十倍的浮游动物生物量,更高的渔获量和更多的鲸鱼目击。即使是佛得角地区鲭鱼和金枪鱼的年渔获量也与这些小规模物理过程的强度和相关的叶绿素水平密切相关。

    但这项研究的关键发现超出了生产力:它表明,不仅生命的数量,而且存在的生物体的类型也取决于潜在的物理动力学。浮游动物群落在以潮汐混合、风驱动的岛屿尾迹或大型海洋涡流为主的地区之间存在明显差异——这些差异似乎将食物链传播到鱼类和海洋哺乳动物。

    Schütte说:“在潮汐占主导地位的地方,我们发现与受风或涡流影响的地区不同的动物。”“过去看似混乱的多样性现在呈现出可识别的模式。我们开始构建海洋——并了解生物多样性是如何出现的。”

    海洋保护和可持续利用的相关性

    这项研究首次详细揭示了佛得角群岛周围的海洋生物多样性是如何被物理海洋过程和水下地形塑造的。这种整体观点为了解整个生态系统提供了关键基础——从物理驱动因素到微观藻类、鱼类和鲸鱼。

    这种系统性的观点对海洋保护和可持续渔业管理尤为重要。到目前为止,许多渔业决策主要依赖于渔获量统计数据。这项研究表明,前瞻性海洋监测需要更多:跨学科数据收集,捕捉物理、化学和生物过程——理想情况下,与卫星数据和现场长期观测相结合。



  • 原文来源:https://www.geomar.de/en/news/article/kleine-prozesse-grosse-wirkung
相关报告
  • 《英国国家海洋中心:对生物多样性的新见解有助保护海洋生态系统免受人类活动影响》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2018-03-23
    • 科学家们认为,对海底死火山周围生物模式的新见解可为保护海洋生态系统免受人类活动(如拖网捕捞、深海采矿等)的影响提供信息。该结果已于《自然科学报告》(Nature Scientific Reports)发表,提出海洋生物群落的结构取决于海底深度和小尺度特征。 英国国家海洋中心(NOC)和南安普敦大学的博士生Lissette Victorero说:“文章中使用的研究方法之前主要用于调查陆地生态系统。然而,我发现这种方法可以确定海山上独特的生物群落,进而明确需要保护的区域。因此,这可以成为保护和管理海洋生态系统的有力工具,比如监测拖网和未来采矿对深海生物多样性的影响。” 深海死火山或海山是生物多样性的热点地区,拥有大量的珊瑚、海绵群落以及丰富的鱼类。这项研究使用水下机器人(ROV)收集了深达3公里的视频。研究人员通过视频资料确定了赤道-大西洋海域安南海山表面的生物数量超过3万种,其中包括壮观的冷水珊瑚群。 科学家们利用统计模型来区分生物群落变化的结构和驱动这些模式的原因。他们发现,生物群落结构受到海底小尺度变化的控制,海洋生物群落之间的主要区别在于物种的种类,而非数量。因此,任何改变海底的人类活动,如深海采矿等,都可能对海山周围的海洋生物群落产生巨大影响。“我对这个结果感到特别兴奋,因为海山的研究实在太少了,现在我们可以调查这些模式是否适用于其他海山和地区,并继续在当地和区域性的深海生物多样性模式间形成联系。”Lissette继续说道。 研究人员还发现,动物会集中聚集在某些地区,或者作为一个物种的群集,或者作为不同物种的密集群体。这些发现可以为防止人类活动破坏重要海洋生物群落提供有力证据。 (刘雪雁 编译) 原文链接:https://www.nature.com/articles/s41598-018-22296-8
  • 《利用古生物数据揭示生物相互作用对海洋生物多样性影响》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2021-03-17
    • 研究显示海洋动物之间的竞争以类似于全球灾难(火山活动、小行星撞击或气候变化等)引发的大规模灭绝彻底改变了海洋生态系统结构。这项由瑞典于默奥大学(Umeå University)和美国佛罗里达自然历史博物馆(Florida Museum of Natural History)的科学家们利用古生物数据库建立的一个多层次的计算机模型,记录了过去5亿年海洋生物演化史。他们的研究结果与古生物学家J. John Sepkoski在1981年的一项开创性研究密切呼应。Sepkoski突破性的统计工作表明,大约在4.9亿年和2.5亿年前,整个海洋的生物多样性发生了突变,发生了两次大的灭绝事件。这些事件将海洋生物划分 “三大进化动物群”,每个动物群都由一组独特的动物主导。 但这项由佛罗里达大学的博士后研究员Alexis Rojas主导的最新模型揭示了地质历史时期第四个进化动物群。大约2.5亿至6600万年前,掠食性海洋动物和它们的猎物之间为生存而进行的激烈斗争,第三次将海洋生物多样性重塑为我们今天所看到的样子(以鱼类、甲壳类海洋生物为主)。第三次大转变比前来两次要渐进得多,是由生物群内部优胜劣汰自然选择而不是外部因素驱动的。 合著者Kowalewski认为Sepkoski的假说从根本上改变了科学家对生命史的思考。它提供了一种有组织的方式来理解海洋生态系统的历史。但是,随着人们对化石记录的不断了解,Sepkoski在如何分析如此庞大而复杂的信息方面也陷入了困境。Rojas通过使用数据建模的最新进展来应对这一挑战。与古生物学中的其他方法不同,复杂网络使用代表物理和抽象变量的节点的链接结构来揭示给定系统中的潜在关系模式。Rojas和他的同事们的网络将不同的时间间隔作为单独的层,这是以前关于宏观进化的研究中所缺乏的特征。其结果是Rojas所描述的一种新的、抽象的化石演化结构图,记录了较小的动物群以及它们在每个进化动物群中的相互作用,这些复杂的网络是Sepkoski的模型无法显示的。 Sepkoski的模型受限于当时的方法和数据,无法划分出这一渐变前后的海洋生态系统。Rojas和他的同事们的研究表明,数据建模过程在塑造最高层次的海洋生命史方面都发挥了关键作用。Rojas强调,他们正在将两个假设——中生代海洋革命和三个伟大的进化动物群整合成一个的故事,该模型显示的不是生命的三个阶段,而是四个阶段。(刁何煜 编译)