《人工智能浪潮掀起三大技术支撑智能制造 (附...》

  • 来源专题:数控机床——战略政策
  • 编译者: 杨芳
  • 发布时间:2015-10-09
  •   近日,在中国人工智能学会于上海召开的“2015第五届中国智能产业高峰论坛”上,多位院士、专家解读了人工智能、互联网和智能制造的趋势和技术。   继移动互联网之后,人工智能浪潮已开始掀起。今年5、6月,国务院连续印发了《中国制造2025》和《关于积极推进互联网+行动的指导意见》两个国家战略层面的文件,将我国智能产业推入快速发展的轨道。在中国人工智能学会近日于上海召开的“2015第五届中国智能产业高峰论坛”上,多位院士、专家解读了人工智能、互联网和智能制造的趋势和技术。   中国工程院院士卢秉恒在分析“中国制造2025”时认为,支撑智能制造的三大技术是:机器人、智能装备以及3D打印。   

      这其中,我国高端机器人和数控机床都处在产业化的艰苦攻关期,而3D打印技术正处于产业发展的起步期和企业的跑马圈地期。   卢秉恒认为,3D打印最符合工业4.0的制造工艺。它给制造业带来颠覆性变革——产品开发周期与成本成倍下降,基本上是原来的1/3至1/5,使用材料利用率由5%提升至85%。GE公司做了一个非常创新的工作,用3D打印把20个零件合成了1个零件,提高燃油效率15%,发动机前进了一代。   他还认为,中国制造在基础研究方面要强调三个新的基础:传感器、软件、大数据。   如今,大数据已成为网络时代人类社会的重要资产,被称之为“新时代的石油”。而手机、电视机、汽车和聊天机器人等作为“传感器”,为互联网商提供源源不断的大数据资产。各行各业的大数据,规模从TB到PB到EB到ZB,以三个数据级的阶梯迅速发展。   此外,机器人也在人工智能领域扮演重要角色。中国工程院院士李德毅认为,当前应该更多研发的不是人型机器人,而是云机器人。在云计算数据中心,用成千上万台的CPU+GPU服务器架构,通过大数据样本做混合的大规模深度学习的并行训练,可确定几十亿个参数的人工神经,成为人工智能又一大亮点。   “互联网、云计算、物联网和大数据可有力支撑云机器人如何听说、如何看、如何想,而解决机器人如何动作的‘智能制造2025’迎来了我国机器人的春天。”   生物识别同样是人工智能的重要一环。《关于继续推进互联网+行动指导意见》一共有11项“重点行动”,最后一个就是“互联网+人工智能”,其中特别提到“生物特征识别”的研发和产业化,为产业智能化升级夯实基础。   百度的特点是连接人与信息,阿里巴巴是连接人与商品,腾讯是连接人与人。中国人工智能学会副理事长、中国科学院院士谭铁牛认为,“互联网+”的本质就是“以人为本,连接一切。”既然是以人为本,一定要知道这个人是谁,所以“生物识别”将是智能化时代的一个关键技术。   谭铁牛认为,可穿戴设备蕴含生物识别巨大的发展空间。在未来,生物识别将以“云”服务的形式提供。用户本身成为一个采集设备,通过可穿戴设备等智能终端、智能汽车、智能家居等行业内的生物识别数据收集和互换,形成云端数据库从而实现精准垂直服务。

相关报告
  • 《化工智能制造的方向 | 人工智能并不靠谱》

    • 来源专题:数控机床——战略政策
    • 编译者:杨芳
    • 发布时间:2017-09-25
    • 这两年,由于人工智能在某些领域 (并非是工业领域)的突出表现,有些人开始乐观起来,觉得中国在要通过“互联网+”和人工智能实现制造业、工业化的弯道超车。真的会有这么乐观吗? 2007年我在写博士毕业论文时,第一章绪论的第一句话就是,“《十六大报告》(2002)中明确提出‘以信息化带动工业化,以工业化促进信息化’”。 后来十七大(2007)提出:“工业化和信息化融合”; 为这个两化,国家在2008年还组建了“工业和信息化部”,说明国家对这个发展战略问题有深刻的认识和重视。再后来十八大(2012)提出:“两化深度融合”。直到现在如火如荼的智能制造热潮中,两化融合仍然是工信部的“立部之本”。十几年过去了,还在不断地提两化,说明这件事情并不容易,推进并不如政府想的那么顺利。 目前智能制造离散行业谈的很多,但化学工业的智能制造谈的却很少。那么,化工智能制造,到底朝哪个方向发展呢? 化工早已在自动化快道上 化学工业早已实现初级智能系统--自动化控制。由于化工过程的连续性和装置的大型化,且装置投资巨大(动辄数十亿上百亿的投资),化工行业(包含炼油、石油化工)很早就对过程自动化提出非常高的要求,在上世纪70年代就开始采用DCS用于过程控制。自动化提高了化工生产的稳定性、安全性,也很容易提高工厂的利润率(提高利润是是市场经济环境下企业采用新技术的直接动力)。目前的技术水平可以让化工生产80%以上生产车间和操作实现无人化,主要在一些涉及固体的处理和输送上做到自动化还比较困难。大型化工装置生产车间无人化是正常现象,依靠泵、压缩机实现物料在密闭管道系统中的流动,依靠各种温度、压力、液位、流量控制实现物质和能量在各个操作单元的自动运行。 技术上可行或最优,并不表示经济效益最优。特别是一些小装置,完全采用自控系统系统单位成本高;当人力成本低时,宁愿采用人工操作。所以现实世界的化工行业的自动化率是由技术水平、经济效益(投资成本、人力成本)共同决定。 传统AI不适合化学工业 传统的人工智能(大数据、机器学习)的核心是对历史数据归纳提取规则,从而对未来预测。其理论基础是:运行数据包含了系统的所有重要隐藏信息,无须研究问题机理,可以直接从数据挖掘出系统的规律和知识。 这种人工智能不适合化学工业,并且对化学工业的智能化生产生产作用极其有限。基于三点理由: 1.化工装置的运行机理和数学模型相对完整。化学工程作为一门发展超过100年的工程学科,知识体系相对完整。化工装置作为人工设计系统,设计之时设计者已经清楚装置的内在特性和机理,已经知道装置的数学模型。所以无需再使用人工智能去挖掘、发现知识。即使在机理不清或边界不定时,一些常规的、传统的数据分析方法已经足以应对化工中的问题。 2.化工装置作为严格受控系统,数据虽多但是单调,信息量太低以致无法挖掘知识。由于化工过程被各种控制系统严格控制,生产平稳,所以产生的数据虽多但分布窄,无法采用人工智能从这种信息量少的大数据中提取出规律或知识。100个、10000个相同数据所含的信息量和1个数据一样。 3.化工装置对系统的可靠性、安全性要求不接受人工智能系统产生的黑箱知识。化工生产对安全性和可靠性的要求极其严格,万一发生事故都是灾难性,对环境和员工生命带来的损失是不可挽回的。人工智能完全依靠系统的输入输出数据产生一个黑箱模型。这种黑箱模型应用时,一是无法根据模型找到故障或者问题的原因,二是难以对模型的可靠性作评估。 传统人工智能比较适合系统极其复杂(以致难以研究机理)、对系统因果性和可靠性没有严格要求的人类智力活动,例如金融、商业、医学,人工智能对这些领域将产生革命性变革,这些变革真在我们身边发生。而科学技术领域本质上就是对因果性和可靠性的追求,科学家和工程师长期对数据的重视和应用,人工智能对科学技术的变革程度,从知识发现和提取的角度将是有限的。 知识自动化才是主方向 化学工程作为一种典型的工程学科,其特点是半理论半实验。由于一些现象过于复杂,涉及机械、材料、物理、化学、热力学、动力学和传递,多种因素关联偶合在一起,无法通过纯理论逻辑推导得到某些现象的原因或结论,需要在实验室环境下将各种因素分离独立研究(彻底的研究方法),或者综合在一起、只研究主要因素对结果的影响。也就是说,化学工程的大部分理论知识来自于实验室研究。 举一个简单例子,例如一组新的二元体系,在没有汽液平衡实验数据的前提下,有哪种模型敢说它的预测精度在5%内?虽然化工文献和数据库中已经有了上百万组的二元汽液平衡实验数据,化工热力学家研究了近50年的汽液平衡预测模型,但一旦遇到关键应用,还是得去实验室做实验得到实验数据。 由于化工现象的复杂性,有些现象在工业装置上表现出与实验室实验装置上不同的特性甚至在实验室无法观察到的现象,即所谓的“放大效应”,其本质还是对某些因素考察不清导致没有正确预测。此时,我们可以从工业装置得到反馈从而扩展化学工程的知识。另外,从工业装置运行中,还可以得到大量的操作、维护、安全方面的、超出实验室研究范围的经验性知识。 虽然化工行业在中国不是什么好形象,在大学也不是什么好专业,但是其学科知识结构、研究方法都比较复杂,在欧美化学工程在工程学科中是一个收入靠前的专业。 将经验转化为数据,将数据转化为知识,将知识融入到自动化系统中,这就是知识自动化,这才是智能制造的核心。 可见,一个化工装置的工艺机理知识基本已经融入到最初的设计中和运行的自动化控制中,已经80%以上实现了知识的自动化;而装置运营知识,主要涉及人员管理、资产设备管理、操作、维护、供应链的知识还是存在于各种SOP中,和作为经验存在于人脑中,这方面离知识自动化还有很在大的距离。 知识自动化才是今后化学工业搞信息化、智能化的重点方向。
  • 《“人工智能+制造”最终目的是加快制造业转型升级》

    • 来源专题:数控机床——战略政策
    • 编译者:杨芳
    • 发布时间:2018-06-21
    • 中国社会科学院工业经济研究所和腾讯研究院共同研究编制的《“人工智能+制造”产业发展研究报告》认为,对于复杂的制造业来说,互联网的定位更应该在“助力者”而非“颠覆者”,帮助制造企业加快转型升级的步伐。 “人工智能+制造”本质是追求人机协同 人工智能作为一类信息技术,诞生于20世纪50年代,几乎与计算机同步。60多年来人工智能涉及的技术和派系众多,学界并没有一个明确的定义。对于大多数公众而言,从其发展目的的角度,可以简单将其理解为“与人类一样聪明的人造机器”。 将这个聪明的“机器”放入制造业中,主要的作用就是使机器能够“达到甚至超过人类技工水平”,以实现企业生产运营效率的提升。这个放入“人工智能”的“智能化”过程,与过去制造业追求“自动化”的过程实际上有本质的差异。“自动化”追求的是机器自动生产,本质是“机器替人”,强调大规模的机器生产;而“智能化”追求的是机器的柔性生产,本质是“人机协同”,强调机器能够自主配合要素变化和人的工作。 因此,“人工智能+制造”未来所追求的,不应是简单粗暴的“机器替人”,而应是将工业革命以来极度细化、甚至异化的工人流水线工作,重新拉回“以人为本”的组织模式,即让机器承担更多简单重复甚至危险的工作,而人承担更多管理和创造工作。 “人工智能+制造”必然走向平台模式 制造业是一个庞大的产业,同一个厂房里,可能有好几种来自不同厂家的生产设备,这些设备往往采用各自的技术和数据标准,彼此之间并不能直接连通和交互。不同的工厂乃至不同的制造业企业,差异就更大了。这样的差异使得传统制造业信息化难度大、效率提升有限。 互联网的普及和发展催生了“平台模式”,平台内信息传播的速度大大增加、交易成本大大降低,有效促进了经济效率的提升。近几年,互联网的这个模式逐渐扩展到了各行各业。对于制造业而言,这个模式就是“工业互联网平台”。 未来“人工智能+制造”的实现的重要基础就是这个平台,由这个平台为产业提供通用的算力(工业云计算和边缘计算)、算据(工业大数据)和算法(工业人工智能)能力,从而推动整个产业的转型升级。根据调研公司MarketsandMarkets的数据显示,这三部分代表的全球工业互联网平台市场规模占整体“人工智能+制造”的比例,将从2016年的24%增长为2025年的36%,达到2.6千亿美元。 互联网助力“人工智能+制造”的三类典型场景 互联网经过数十年发展,已成为信息革命的中坚力量,也是当前人工智能技术发展的领航者。其连接、数据、云、算法和安全等五方面的经验与积累,能够有效支持其推动人工智能与各产业结合落地。对“人工智能+制造”而言,目前互联网助力的典型场景主要有三类: 一是产品注智,从软件到硬件的智能升级。互联网可以将其人工智能算法,以能力封装和开放方式嵌入到产品中,从而帮助制造业生产新一代的智能产品。如谷歌开发出专用于大规模机器学习的智能芯片TPU、腾讯AI开放平台对外提供计算机视觉等AI能力等。 二是服务注智,提高营销和售后的精准水平。互联网可利用其人工智能算法,为制造企业提供更精准的增值服务。一是售前营销,以人工智能进行用户侧需求数据的多维分析,实现更实时、精准的广告信息传递;二是售后维护,以物联网、大数据和人工智能算法,实现对制造业产品的实时监测、管理和风险预警。如三一重工结合腾讯云,把分布全球的30万台设备接入平台,利用大数据和智能算法,远程管理庞大设备群的运行状况,有效实现故障风险预警,大大提升了排障效率并降低维护成本。 三是生产注智,增强机器自主生产能力。互联网可帮助制造企业,将人工智能技术嵌入生产流程环节中,使得机器能够在更多复杂情况下实现自主生产,从而全面提升生产效率。目前主要应用在工艺优化,即通过机器学习建立产品的健康模型,识别各制造环节参数对最终产品质量的影响,最终找到最佳生产工艺参数;智能质检,即借助机器视觉识别,快速扫描产品质量,提高质检效率。 总之对于复杂的制造业而言,互联网需要更多从合作者、助力者、服务者的角度看待。正如腾讯董事会主席兼首席执行官马化腾所言,腾讯“不会进入各行各业取而代之,而是做好连接、工具和生态三个角色”。在此基础上,人工智能等新一代信息技术才能更有效地发挥作用。