《“化学能高效转化碳基纳米电催化剂结构设计、可控制备及应用研究”课题中期评估总结会》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-08-13
  • 国家重点研发计划项目“化学能高效转化碳基纳米电催化剂结构设计、可控制备及应用研究”课题中期评估总结会顺利举行

    2019年7月15日,由中国科学院上海高等研究院牵头,北京化工大学、厦门大学以及南京大学共同承担的国家重点研发计划项目“化学能高效转化碳基纳米电催化剂结构设计、可控制备及应用研究”课题中期评估总结会在上海高研院召开。中国科学院上海有机所唐勇院士、厦门大学孙世刚院士、中国科学技术大学俞书宏教授、中国科学院长春应化所邢巍研究员、纳米技术及应用国家工程中心何丹农教授、上海交通大学朱新坚教授、复旦大学余学斌教授、上海高研院封松林研究员、上海高研院魏伟副院长和科技发展处负责人张丽亮以及项目组成员共计50余人出席了此次会议。会议由项目负责人杨辉研究员主持,上海高研院副院长魏伟致欢迎辞。

    杨辉首先介绍了课题的中期评估要求以及项目的总体进展情况,三个课题围绕中期目标和技术指标完成情况以及拟解决的关键科学问题分别汇报了课题计划执行情况、取得的主要进展、课题间的合作以及下阶段的研究工作计划等。与会领导和专家充分肯定了各课题在前两年围绕项目总目标所取得的阶段性研究成果,顺利完成了中期预定任务和目标,同时对各课题今后三年的工作计划提出了宝贵的意见和建议,希望各课题能够进一步加强交流与合作,为解决国家重大需求和重大科技问题多做贡献。

相关报告
  • 《青岛能源所成功制备石墨炔基高效燃料电池阴极催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-24
    • 面临环境和能源方面的种种问题,新能源汽车产业获得了蓬勃发展。据彭博新能源财经网(Bloomberg NEF)报道,截止到2018年8月30日之前,全球电动汽车的累计销量约达到400万辆。电动汽车有别于传统汽车的重要组件是其电池系统。其中,燃料电池采用氢气作为原料,产物为水,是一种污染少、能量转化效率高的理想电池系统。然而,面临大规模商业化,燃料电池在成本方面还具有较大的阻力,其主要表现在电池阴极需要大量的贵金属铂基催化剂。铂基材料价格昂贵,储量有限,大大阻碍了燃料电池的可持续性、大规模应用。因此,迫切需要制备一种性能优异、价格低廉、储量丰富的新型阴极催化剂以替代铂基催化剂。   针对以上问题,在李玉良院士的指导下,青岛能源所黄长水研究员带领碳基材料与能源应用研究组设计了一种苯环中部分碳原子与氢相连的新型石墨炔基碳材料(HsGDY)催化剂。该材料的设计和实现是在研究组前期成功合成与应用大量石墨炔基材料的基础上完成的。相关成果已发表于国际著名期刊Nature Communications (Nat. Commun. 2018, 9, 3376)上,并被选为Highlight工作。   得益于HsGDY的独特结构,在对其进行后处理过程中,碳基材料与能源应用研究组准确控制了氮的掺入类型,选择性掺入对燃料电池阴极电催化最有效的吡啶氮原子,从而实现了优异的催化性能。同时,HsGDY具有六边形的大孔,其分子孔径达1.63 nm,有利于催化反应过程中反应物和产物的传质。通过电化学测试发现,吡啶氮掺杂的HsGDY在碱性条件下表现出了优于商业碳载铂催化剂的超高活性。其在0.85 V电位下的电流密度为商业碳载铂催化剂的1.6倍,同时具有比碳载铂更好的稳定性和抗甲醇中毒能力。吡啶氮掺杂的HsGDY作为新型燃料电池阴极催化剂替代传统铂基催化剂,展现了巨大的潜力。这种通过碳材料结构设计,实现异原子的准确掺杂的方法,也为制备其他掺杂型纳米材料提供了新的思路。   该研究得到了国家自然科学基金,中国科学院前沿重点项目,山东省自然科学基金的支持。
  • 《“叫化鸡法”制备Co,N共掺杂的碳基高效ORR电催化剂》

    • 来源专题:海西院结构化学领域监测服务
    • 编译者:fjirsmyc
    • 发布时间:2016-03-02
    • 燃料电池与金属-空气电池等能源储存与转化技术可以直接将化学能通过电化学方式转化成电能,具有低噪音、环境友好、高效的优点,越来越受到人们的广泛关注。该类电池的关键组成部分氧还原反应(ORR)催化剂的性能,往往决定了电池的能量转化效率及其成本的高低。Pt基催化剂是目前广泛应用性能优越的ORR电催化剂,但是其价格昂贵且储量有限难以大规模使用,研究可替代的非铂催化剂显的尤为重要。通过高温热解各种含氮和金属前体(如卟啉、二胺、苯胺、金属有机框架或聚碳氮化物),获得的金属和氮掺杂碳(M,N-C)基电催化剂,是一种极有前景的非铂ORR催化剂。然而,目前报道的M,N-C基电催化剂性能和商用Pt基催化剂相比仍有较大差距,因此,如何进一步提高M,N-C基电催化剂的活性依旧是相关领域内重要的研究挑战。 图来源:Adv. Mater., 10.1002/adma.201505045 中国科学院理化技术研究所张铁锐研究员课题组通过深入的研究发现:高温热解法会造成M,N-C基电催化剂纳米颗粒的不可逆融合和聚集,进一步导致以下副作用:1)纳米颗粒间的孔隙融合减少使得反应物到达活性位点变得困难;2)纳米粒子的聚集减少了活性位点的数量;3)不可逆聚集导致催化剂分散性差,从而使催化电极的制备重复性变差。因此迫切需要找到低成本的新方法克服了纳米颗粒高温热解条件下导致的融合和聚集问题。 借鉴传统美食“叫化鸡”包裹一层泥壳再烤制的制作方法,科研人员以前驱体沸石咪唑酯骨架结构(ZIF)纳米颗粒为例,在其表面包裹一层耐高温纳米级厚度“泥壳”(介孔二氧化硅)后再进行煅烧,有效地抑制了纳米颗粒的团聚和融合,最后再去除表面的“泥壳”,成功地合成了单分散Co,N共掺杂的碳骨架结构,由于有效地解决了纳米颗粒的团聚和融合问题,与直接煅烧的样品相比,比表面积与孔容分别提高1倍和2倍以上,催化活性显著提高。在相同的催化剂载量条件下,在碱性环境中活性甚至超越商业Pt催化剂,酸性环境中的活性也较为接近。该催化剂还具有更好的稳定性能和抗甲醇性能,显示出极好的替代Pt基催化剂的潜力。相关结果发表于2月24日出版的《Advanced Materials》期刊上(DOI: 10.1002/adma.201505045)。 (来源:MaterialsViewsChina)