《迄今最轻薄有机发光二极管面世》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-12-09
  • 英国科学家在最新一期《自然·通信》杂志上撰文指出,他们借助新方法,研制出了迄今最耐用、最轻、最薄的光源。这种新型有机发光二极管(LED)有望对未来手机和平板电脑的设计产生重大影响,让这些设备的显示器可折叠起来,同时也有望促进脑科学的发展。

      在该研究中,圣安德鲁斯大学物理与天文学学院的科学家利用有机电致发光分子、金属氧化物和具有生物兼容性的聚合物保护层,制造出了这种像日常保鲜膜一样纤薄而柔韧的有机LED。

      此前的超薄有机LED设备在空气和潮湿环境中很不稳定,而新研制出的发光二极管可在水下放置数周,即便暴露于溶剂和气体等离子体中也“无所畏惧”,表明其极具耐用性。

      研究人员指出,新光源不仅坚固耐用,而且极具力学柔韧性,未来除了可应用于移动技术领域之外,还可在多个领域“大显身手”。例如,它们可整合到工作台表面、包装和衣物内,用于可穿戴设备,以及在生物医学研究中用作植入物。

      研究负责人马尔特·加瑟教授说:“我们的有机LED非常适合作为生物医学和神经科学研究领域的新工具,未来也有望在临床领域发挥作用。”

      在另一项研究中,科学家利用一系列这种微型LED发出的光和光遗传学神经科学方法,以高度可控的方式引导苍蝇幼虫的运动:用LED向正在爬行的苍蝇幼虫的特定身体部位发射光线,打开或关闭幼虫的感觉神经元——通过光的传递时间和位置,决定幼虫向前还是向后爬行。

      该实验负责人卡罗琳·穆拉夫斯基博士解释说:“虽然动物反应背后的精确神经元机制仍不清楚,但我们现在可以更好地检验与这些生物体运动有关的一系列假设。”

      研究人员目前正在结合相关知识,制造可植入脊椎动物大脑的光源,这使他们未来能用一种比现有技术更“温柔”的方式来研究大脑功能。此外,最新技术还可创建光学接口,将信息直接发送给视觉、听觉或触觉受损的患者的大脑。

    总编辑圈点

      最耐用、最轻、最薄,这些描述中的每个词都能让业界兴奋起来。毕竟耐用和轻薄常常不能兼得,使得这类有机LED的实用性大打折扣。文中提到的新光源,薄且柔韧,在液体中也能照常工作。围绕它,可以开展诸多有想象力的应用。除了用于智能可穿戴设备外,科学家还用这种光源引导苍蝇幼虫运动,做神经科学研究;他们也想干脆将这种光源植入大脑,做脑科学研究。新的材料,往往能带动一系列领域的革新,就看哪个领域能最先降低成本,实现产业化了。

相关报告
  • 《有机发光二极管照亮的电子座舱》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2017-01-22
    • 伟世通推出连接汽车电子的目标连接汽车,在CES 2017上首次亮相。另外一个开发者友好的信息娱乐平台的软件开发工具包(SDK),AR平视显示器和先进的显示器,它专注于驾驶舱电子。已经转向全数字驾驶舱,或e-cockpit,公司有最新的曲线,有机发光二极管(OLED)、双视图显示,通过一个简单的用户界面获得信息定制,协助司机和乘客。 伟世通的显示技术提供了一个全方位的生产准备,全数字仪表盘和显示器的高级图形和照明。全数字仪表集群的发展趋势越来越大,高分辨率显示器代表了自主汽车不断发展的主要接口。 伟世通的照明技术,创造高品质的集群和显示重现汽车消费电子的经验将是重要的前进作为连接汽车行业继续发展的能力。
  • 《突破 | 浙江大学在量子点发光二极管研究方面取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-05-25
    • 近日,浙江大学金一政课题组、王林军课题组与华南理工大学黄飞/应磊团队合作,在高性能蓝、绿光量子点发光二极管(QLED)的开发上取得进展。研究者揭示了无机量子点/有机高分子界面的电荷转移机制,继而通过调控高分子空穴传输材料的分子结构,有效地抑制了器件的载流子泄漏,从而同时创造了蓝、绿光QLED的效率/寿命新纪录,尤其是绿光QLED的性能已经满足显示业界的应用需求。 QLED是一种以胶体量子点材料作为发光中心、可通过溶液工艺制备的电致发光器件,是下一代低成本、低能耗、广色域大屏显示技术的有力竞争者。显示应用需要红、绿、蓝三色器件。目前,红光QLED原型器件的效率、工作寿命等性能指标已满足产业化要求,但蓝、绿光QLED的性能仍低于应用需求。针对该瓶颈问题,研究者应用纳晶科技公司的高性能CdSe基量子点为模型系统,开展了机制研究,发现:有机空穴传输材料能级的能量无序会显著增强量子点/有机空穴传输层界面的电子泄漏,是造成蓝、绿光QLED效率损失的关键通道。具体地,相比于无机晶体量子点,有机无定形聚合物薄膜具有显著的结构无序度与较强的电-声子耦合作用,导致了较多的带尾态分布与较大的能级展宽。此外,单颗量子点的尺寸(约10 nm)远大于有机聚合物单元(约1~2 nm),形成了单给体-多受体的特殊界面。研究者结合QLED的光谱表征与界面电子转移的非绝热动力学模拟,确证上述效应显著增强了界面电子转移,导致器件中的漏电流。 图1 蓝、绿光QLED的界面电荷转移机制 在明晰了上述关键机制的基础上,研究团队设计并合成了系列基于刚性共聚单元的咔唑-芴交替共聚聚合物(PF8Cz,已在东莞伏安光电科技有限公司实现生产和销售),并通过合成方法的调控实现了高分子量。该材料与传统聚合物传输层相比,具有更浅的LUMO能级与更小的能量无序,因而表现出优异的电子阻挡能力。最终,利用此空穴传输材料,研究团队构筑了高性能蓝、绿光QLED原型器件,最高外量子效率分别达21.9%与28.7%,且高效率窗口覆盖了从显示到通用照明的亮度范围。蓝、绿光QLED分别实现了长达4400小时与58万小时的工作寿命(100尼特下亮度衰减95%),均是目前报道过的QLED最高值。 该研究为QLED器件的材料设计提供了关键的新策略,实现了性能满足显示应用需求的绿光QLED原型器件,有望推动量子点印刷显示技术的实用化进程。 图2 高性能绿光、蓝光量子点发光二极管