《日本京瓷公司推出世界上最小的硅衬底GaN基边缘发射激光器》

  • 来源专题:集成电路
  • 编译者: 李衍
  • 发布时间:2022-11-18
  • 据官网11月2日报道,日本京瓷(Kyocera )公司推出了一种新的薄膜工艺,用于为氮化镓(GaN)基微光源(包括短腔激光器和微型LED)制造独特的硅(Si)衬底。京瓷公司利用该新工艺可以制造出更高产量、更低成本的100微米长度的短腔激光器和微型LED,可进一步应用于自动驾驶汽车的透明显示屏和AR和VR的智能眼镜等产品。

    该新工艺技术由京瓷公司位于日本京都的先进材料和设备研究所开发。首先,以低成本的方式在Si衬底上生长出大体积GaN层。然后在GaN层上用中间有开口的非生长材料进行掩模。此后再让Si衬底GaN层在掩模的开口上方生长GaN核。作为生长核的GaN层在生长初期具有许多缺陷;但是,随着继续横向生长形成GaN层,可以产生具有低缺陷密度的高质量GaN层并且可以在此低缺陷区域成功制造器件。

    京瓷公司的新工艺具有以下优势:(1) 更容易剥离GaN器件层:用不生长的材料掩蔽GaN层抑制了Si衬底和GaN层之间的结合,大大简化了剥离过程。(2)具有低缺陷密度的高质量GaN器件层:因为可以在比以前更宽的区域上沉积低缺陷GaN,因此可以连续制造高质量的器件层。(3)降低制造成本:有助于GaN器件层与相对廉价的Si衬底的成功可靠剥离,从而大大降低制造成本。

    原文链接:https://global.kyocera.com/newsroom/news/2022/000652.html

  • 原文来源:https://www.newelectronics.co.uk/content/news/kyocera-develops-automotive-night-vision-system-using-a-single-gan-laser-device
相关报告
  • 《具有n型脊的硅衬底InGaN激光器》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2020-10-19
    • 中国苏州纳米技术与纳米仿生研究所(SINANO)已在硅上使用n型脊形波导(nRW)制造了氮化铟镓(InGaN)发射紫光的激光二极管(LDs),与pRW LDs相比,其电阻更低,热性能更好。普通工艺要求基于InGaN的激光二极管中的RW位于器件的p侧,但p-GaN的电阻比n-GaN的电阻大得多,因此出现了热和电问题。 该团队认为nRW-LD器件可以与大规模的硅基互补金属氧化物半导体(CMOS)主流电子产品完全兼容,并且可以在单片集成硅光子学中用作高效的片上光源,以实现高功率加快数据通信和计算速度。 RW-LD的III-氮化物异质结构在硅上生长,并控制穿线错位密度。激光二极管结构由夹在波导层之间的五个InGaN量子阱组成。将激光二极管结构的p面朝下键合到具有p型欧姆接触电极表面的精确Si(100)晶片上。倒置的RW-LD结构使包层的n型侧面约为0.5μm。在非倒置结构中,n覆层位于厚GaN模板的顶部,倒置RW-LD覆层的p侧较厚,为1.2μm。最终将键合材料制成10μmx800μmRW-LD器件。 研究人员表示低热导率的n型AlGaN包层厚度减小可以降低由于AlGaN和GaN模板之间晶格失配而产生的热阻和拉应力,从而提高器件性能和制造成品率。 在-5V反向偏置下,反向泄漏电流为?10-7A。开启电压约为3.0V。反向nRW-LD注入350mA时的差分电阻为1.2Ω,反向器件的热阻估计为18.2K / W。在350mA下连续波(CW)操作下的结温为48.5°C。 在100mA注入时,nRW-LD结构的半峰全宽(FWHM)光谱线为12nm。在320mA时,线宽缩小到0.8nm,在阈值处给出的激光模式波长为418.3nm。
  • 《复旦大学研制出世界上首个全硅激光器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-19
    • 科学网1月18日上海讯(记者黄辛 通讯员韩蕴如)复旦大学信息科学与工程学院吴翔教授、陆明教授和张树宇副教授团队合作,研制出世界上首个全硅激光器。相关研究成果日前以快报形式发表于《科学通报》(Science Bulletin)。 据悉,不同于以往的混合型硅基激光器,这次研究最终实现由硅自身作为增益介质产生激光。 集成硅光电子结合了当今两大支柱产业——微电子产业和光电子产业——的精华。硅激光器是集成硅光电子芯片的基本元件,是实现集成硅光电子的关键。集成硅光电子预计将广泛应用于远程数据通信、传感、照明、显示、成像、检测、大数据等众多领域。 然而,硅自身的发光极弱,如何将硅处理成具有高增益的激光材料,一直是一个瓶颈问题。自2000年实验证明硅纳米晶材料可以实现光放大以来,这一瓶颈始终限制着硅激光器的发展。 早在2005年全硅拉曼激光器问世时,有关“全硅激光器”的新闻就曾引起过社会关注。然而,这是一种将外来激光导入到硅芯片后产生的激光器,硅本身并不作为光源。同年,混合型硅基激光器面世。这种激光器是在现有的硅基波导芯片的基础上,直接粘合上成熟的III-V族半导体激光器,使两个部件组合成为一个混合型硅基激光器。同样,硅本身不是光源。混合型激光器和现有硅工艺兼容性较差,还会产生晶格失配问题。 专家介绍,这次研发的硅激光器与以往不同,它的发光材料(增益介质)是硅本身(硅纳米晶材料),激光器可做在硅芯片上,所以是真正意义上的全硅激光器。复旦大学研究人员首先借鉴并发展了一种高密度硅纳米晶薄膜制备技术,由此显著提高了硅纳米晶发光层的发光强度;之后,为克服常规氢钝化方法无法充分饱和悬挂键缺陷这一问题,又发展了一种新型的高压低温氢钝化方法,使得硅纳米晶发光层的光增益一举达到通常III-V族激光材料的水平;在此基础上还设计和制备了相应的分布反馈式(DFB)谐振腔,最终成功获得光泵浦DFB型全硅激光器。这种激光器不仅克服了半导体材料生长过程中会产生的晶格失配和工艺兼容性差的问题,同时,作为地表储备量第二丰富的元素,以硅做光增益材料也可以避免对稀有元素如镓、铟等的过度依赖。 目前,全硅激光器仍需采用光泵浦技术,在紫外脉冲光的激励下,由硅材料自身产生激光。未来,复旦大学团队还将进一步研发和完善电泵浦技术,通过向硅纳米晶激光器内注入电流,产生激光输出,以电发光,走完距离实际应用的最后一公里,促进全硅激光器的产业化发展。