《英国科学家揭示植物光合作用关键酶具有多样性》

  • 来源专题:农业科技前沿与政策咨询快报
  • 编译者: 李楠
  • 发布时间:2017-11-28
  • 二磷酸核酮糖羧化酶是植物中控制光合作用的核心酶,调节植物吸收大气中的二氧化碳,进行植物生长所需的光合作用。日前,英国兰卡斯特大学(Lancaster University)作为牵头机构开展深入研究,揭示了二磷酸核酮糖羧化酶因植物来源不同而具有多样性。

    作为“提高光合效率使作物产量可持续增长”项目(RIPE)的一部分,兰卡斯特大学和利物浦约翰摩尔斯大学(Liverpool John Moores University)组成研究小组,选取草类、野生稻、瓜类、豆类等75种植物品种,并且这些实验植物来自不同的生长环境,包括撒哈拉以南非洲、温带欧洲和亚洲、及澳大利亚北部等地区;旨在分析温度(设计不同温度条件,模仿气候变化效果)对所有实验植物的二磷酸核酮糖羧化酶生化特性的影响,力图探索不同植物来源的二磷酸核酮糖羧化酶对温度的反应。

    最终,基于实验所获得的庞大数据集合,科学家们识别出了若干高性能的“优质”二磷酸核酮糖羧化酶。有些植物的二磷酸核酮糖羧化酶活性及表达性状明显优于小麦和大豆等主要作物,建模结果显示这些优质酶能提高小麦和大豆等作物的光合作用效率。利用这些优质酶的特性,科研人员可以根据不同环境条件,调整作物的光合作用表现,从而达到改良植物、提升其生长速度、减小额外肥料需求量的目的。此外,也助于人们了解气候变化对植物生长的影响。

    该研究结果为改良作物、实现可持续粮食生产提供了信息支持。目前,两所大学的研究人员正努力改良稻米、木薯、大豆、豇豆等作物的品质,旨在帮助缓解日益严峻的全球粮食安全问题。

    (编译 李楠)

相关报告
  • 《科学家揭示浮游植物多样性与生产力之间的关系》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2018-11-23
    • 日本海洋地球科学与技术局全球变化研究与发展中心的Bingzhang Chen和Sherwood Lan Smith研究了浮游植物大小多样性对北太平洋初级生产力的影响。通过使用不同大小的浮游植物群落的新模型,揭示了将生物多样性和生产力的部分未知机制。该研究项目是与德国亥姆霍兹中心的Kai Wirtz教授合作完成的。 浮游植物是海洋食物链的基本构成。就像陆地上的植物一样,海洋中浮游植物的生物多样性对于维持海洋生态系统的整体生产力和恢复力非常重要。此外与陆地植物相比,更多种类的海洋浮游生物往往在任何一个地方共存,即使它们在大小和其他特征上差别很大。虽然在生物多样性和生产力之间观察到了不同的关系,但浮游植物多样性对生产力的影响仍然未知,因为在高度可变的海洋环境中这么多物种的相互作用非常复杂。 为了模拟浮游生物在北太平洋不同地区的生长,科学家们开发了一种连续的浮游植物群落分布特征模型。科学家们研究了不同地区不同环境条件下多样性与生产力关系模拟结果。 结果证明多样性对生产力的影响在很大程度上取决于两个主要影响之间的平衡。一方面在动态环境中,大小和功能的多样性对浮游植物群落是有利的,也就是说它有助于它们在不断变化的环境条件下维持一致的生产力。相比之下,竞争排斥会缩小静态环境中最佳大小或类型的大小分布,因此最具生产力的浮游植物群落在平静区域的多样性较低。研究小组还阐明了洋流和其他物理过程如何通过混合来自不同水域的浮游生物来维持足够大的多样性水平,以支持北太平洋大部分地区相对较高的产量。潜在的机制与先前的理论预测一致:在频繁干扰的地区,更多样化的社区往往更具生产力,因为多样性增强了适应能力,这是一种从环境条件的突然变化中恢复的能力。另一方面,在相对平静的地区,不太多样化的群落往往更有生产力,因为高生产力群落由几乎相同的物种组成,具有恰好的特征或几乎恒定的环境条件的固有特征。因此,多样性对生产力的影响取决于当地的环境条件,特别是干扰的频率。基于查尔斯·达尔文等先驱科学家的见解,这些研究结果首次代表浮游植物群落在三维海洋模拟中使用新模型进行连续大小分布。 海洋生物保护被定义为2015年联合国可持续发展峰会新议程中“海洋,海洋和海洋资源的保护和可持续利用”的17个目标之一。为了优化海洋资源,维持海洋食物链和渔业的生物多样性和生产力时需要考虑干扰频率和强度。具体而言,与干扰相对稀少且生物多样性丧失不太可能降低生产力的地区相比,限制经常受到干扰的地区生物多样性丧失更为重要,以保持那里生态系统的适应能力。 此外,除浮游生物生态系统外,这种方法还可以应用于经济学和人力资源管理等其他不同的研究领域。例如,如何最好地管理员工技能或产品的多样性,以最大限度地提高业务生产力。 (傅圆圆 编译)
  • 《西班牙科学家揭示植物抵御真菌感染的关键机制》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 世界范围内,每年由于真菌感染产生的作物损失至少达1.25亿吨,包括水稻、小麦、玉米、大豆和马铃薯,这些粮食作物足够养活6亿人。真菌不仅在作物生长阶段、在农作物收割后的阶段,包括农产品存储期间、运输过程中或是在消费者手中等,都会带来大量损失。另外,一些真菌产生的霉菌有毒物可导致人类和动物患病、甚至死亡。农民使用真菌杀剂来防治真菌感染,但是不能保证100%有效,并且消费者需要的是不含杀虫剂的作物产品。 同人类相类似,植物也进化出防御机制来保护自身免受真菌侵袭。目前,西班牙农业基因研究中心(Centre for Research in Agricultural Genomics,CRAG)的一个团队发现了一个叫作“小型类泛素修饰蛋白调节机制(SUMOylation)”,通过调控植物中蛋白的活动从而保护植物免受真菌感染,研究结果已发表在专业期刊《分子植物》(Molecular Plant) 。该研究项目是由西班牙国家研究委员会(CSIC)研究员玛利亚·罗伊斯(Maria Lois)团队和玛利亚·可卡(María Coca)研究团队合作完成。玛利亚·罗伊斯(Maria Lois)是蛋白调节研究专家,玛利亚·可卡(María Coca)是植物真菌感染免疫反应研究专家。据玛利亚·罗伊斯解释,这一研究成果可用来开发作物防治新战略,保护农作物免受真菌感染。 小型类泛素修饰蛋白结合其他分子蛋白(SUMOylation),是诸多分子功能的一个关键过程。例如,动物的某些癌症、神经组织退化疾病就与SUMOylation缺陷有关。就植物而言,小型类泛素修饰蛋白与其他蛋白结合,能够调节植物生长以及植物自身对环境压力的反应。然而,科学家很难对SUMOylation的作用进行研究,因为完全阻滞该调节进程会在种子期造成植物死亡。为了克服这些问题,玛利亚·罗伊斯研究小组利用基因工程技术在植物中引入一个蛋白质小片段来部分阻滞SUMOylation,并且保证植物可正常生长。通过这一手段,研究人员发现,SUMOylation受到破坏的植物表现得更容易受死体营养型真菌的感染,如灰葡萄孢菌(Botrytis cinerea)和短小芽孢杆菌(Plectosphaerella cucumerina)。这两种真菌会造成植物死亡,然后以坏死的组织为食。灰葡萄孢菌是一种地域分布广泛的真菌,能感染各种植物。例如,这种真菌会致使酿酒用葡萄得贵腐病和灰霉病,影响葡萄酒质量。短小芽孢杆菌是一种重要的研究模型真菌,可感染诸如甜瓜之类的蔬菜作物。 另外,研究人员观察到,受真菌感染植物中的小型类泛素修饰蛋白很快减少了,表明作为致病机制的一部分,死体营养真菌能够使小型类泛素修饰蛋白减少。 玛利亚·罗伊斯研究团队设计的部分阻滞SUMOylation策略是整个研究项目的关键,科学家期望该策略能开展得更为深入。这一新方法能够帮助科研人员更好地了解受小型类泛素修饰蛋白调控的各种分子进程。更重要的是,这是一个很容易就能在重要的农作物上应用的工具,即便是那些基因很复杂的作物,如小麦。 小型类泛素修饰蛋白调节机制(SUMOylation)研究工作为开发更具针对性的真菌杀剂打开了新的突破口。实际上,玛利亚·罗伊斯已经开始将其在植物小型类泛素修饰蛋白研究中获取的知识应用于人类健康领域。这些研究活动获得了欧洲研究协会(ERC)和加泰隆尼亚政府(Government of Catalonia)的支持。 (编译 李楠)