《韩国碳产业振兴院验证了用于碳纤维制造的可行添加剂》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-03-28
  • 在没有历史数据的情况下,KCarbon在短短5个月内验证了用于碳纤维制造的可行添加剂。在Citrine平台的指导下,人工智能驱动的方法提出了以4倍于传统研发过程的速度达到目标的配方。

    韩国碳产业振兴院 (KCARBON)是一家韩国的创新机构,旨在通过商业和研究支持推动韩国碳产业生态系统的发展。其近日与Citrine Information合作,评估人工智能驱动的方法是否能更有效地开发用于碳纤维加工的配方。Kcarbon团队之前没有使用这些特殊添加剂的经验,该工艺的主要设备是全新的,也没有可用于训练 AI 模型的历史数据。

    Citrine 和 Kcarbon 决定对 20 种初始配方进行测试。在这些初步实验之后,得出了双轨制方法。Track 1:用于建议下一个实验的传统研发方法。Track 2:用于建议下一个实验的 Citrine 平台。Track 2,人工智能驱动的方法推荐的配方以比传统研发方法高 4 倍的速度满足目标特性。

    KCarbon项目经理Moonheui Hahn博士说:“基于人工智能的材料开发既高效又易于使用。它帮助我们超越了直观的配方。”。

    “很高兴看到人工智能模型能够以如此快的速度推出与最先进的商用配方相似的配方,并且使用的是来自韩国本地采购的新原料。”Lawrence Wang,Citrine信息学数据科学家。

    对于探索新产品线或历史数据无法机器读取的公司,该项目表明他们还可以利用人工智能来加速产品和流程优化。

相关报告
  • 《美国高性能碳纤维技术早期发展历程研究 》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-08-15
    • 美英日的碳纤维产业都经历过扼腕叹息的历史:曾经辉煌的公司,如英国皇家航空研究所(RAE) 、英国考陶尔兹(Courtaulds)、英国劳斯莱斯(Rolls-Royce)、英国RK Carbon、美国联合碳公司(UCC)、美国塞兰尼斯Celanese、美国阿莫科(AMOCO),日本大阪工业试验所,日本碳素,日本旭化成……,他们在碳纤维领域均不复存在了。这真可谓大江东去,,浪淘尽,千古风流人物……。 李世民曾讲过:”以史为镜,可以知兴替”。军事科学院周宏同志的这些文章素材详实、技术描述专业,是研究碳纤维历史少有的好文章。同时,他也提出了一个问题:“英国碳纤维技术由盛到衰,教训值得深思”,近些年,英国政府把碳纤维复合材料列为战略产业,政府确定将复合材料作为未来几十年制造业振兴的关键驱动力(the Government identified composites as a key driver in enabling the UK’s manufacturing base to flourish in the coming decades-The UK Composites Strategy),碳纤维产业的基本缺失(除了SGL在英国的大丝束工厂),他们反省会更加刻骨铭心。 然而,当我们回看中国碳纤维的发展历史:1962年,中国科学院长春应化所以李仍元为组长的“聚丙烯腈基碳纤维的研制”课题组(与国际同时起步);1972年,化工部吉林化工研究院开展硝酸法研制碳纤维PAN原丝,并在年产3吨装置上取得硝酸一步法制取原丝,供山西燃化所和长春应化所研究碳纤维(稍微晚于东丽);1975年由当时的国防科委主任张爱萍主持7511会战;1986年,吉林化学工业公司引进英国RK CARBON的技术;2001年师昌绪先生给江泽民主席写了 “关于加速开发高性能碳纤维的请示报告”;2002年安徽华皖集团全套引进英国的原丝碳化生产技术,从此开启中国狂飙猛进的工业建设浪潮;再到今天的“扩产能、求生存、谋发展、待破局的复杂局面”。我们的产业何去何从?确实值得行业同仁深刻反思,……。 美国高性能碳纤维技术早期发展史研究 周宏 军事科学院 摘要:碳纤维发明于美国,最早用作白炽灯的发光体。目前,其高端应用主要是航空航天器的结构材料。碳纤维从灯泡发光体到航空航天器关键材料的应用历程中,原美国联合碳化物公司帕尔马技术中心(Union CarbideCorp.’s Parma Technical Center)的两位科学家发挥了重要作用;罗格·贝肯(Roger Bacon)1958年发现了“石墨晶须(graphite whiskers)”超高强度现象,1964年又发明了制备高模量人造丝基碳纤维的“热拉伸(hot-stretching)”技术;伦纳德·辛格(Leonard Singer)1970年发明了制备中间相沥青基碳纤维的技术。这两位科学家的发现发明,奠定了碳纤维高性能化发展的科学技术基础。本文较全面地综述了美国科学家在高性能碳纤维技术发展初期的研究贡献。 关键词:高性能碳纤维 石墨晶须中间相 沥青基碳纤维 作者介绍:周宏,男,1963年生,教授级高级工程师,长期致力于对位芳纶基单兵作战防护装备技术研究,以及国产高性能纤维技术发展战略研究。 Author’s Introduction: Zhou Hong, Male, Born inJanuary of 1963 in Beijing; HanNationality; Senior engineer of theQuartermaster Research Institute of PLA; since 1995, he has engaged in researchof soldier protective equipment based on PPTA fiber material; since 2006, he hascommitted to doing strategic research on domestication of high performancefibers; and is a member of the expert group for National Priority S&TProject (National S&T Priority Project for High Performance FiberReinforced Composite Material). 碳纤维诞生在美国,其高性能化的基础科学研究也发端在那里。今天,美国仍是世界高性能碳纤维的生产和应用强国。研究美国高性能碳纤维技术的发展历程,对我国碳纤维产业的技术进步和健康发展应有所借鉴。 本文综述了美国高性能碳纤维技术的早期发展过程及两位科学家的重要研究贡献,分析了其经验。 一、碳纤维诞生在美国,始于白炽灯的发明 碳纤维是作为白炽灯的发光体诞生的。英国化学家、物理学家约瑟夫·威尔森·斯万爵士(Sir Joseph Wilson Swan,1828–1914)发明了以铂丝为发光体的白炽灯。为解决铂丝不耐热的问题,斯万使用碳化的细纸条代替铂丝。由于碳纸条在空气中很容易燃烧,斯万通过把灯泡抽成真空基本解决了这一问题。1860年,斯万发明了一盏以碳纸条为发光体的半真空电灯,也就是白炽灯的原型;但当时真空技术不成熟,所以灯的寿命不长。19世纪70年代末,真空技术已渐成熟,斯万发明了更实用的白炽灯,并于1878年获得了专利权。1879年,爱迪生(Thomas Alva Edison,1847-1931)发明了以碳纤维为发光体的白炽灯。他将富含天然线性聚合物的椴树内皮、黄麻、马尼拉麻和大麻等定型成所需要的尺寸和形状,并对其进行高温烘烤;受热时,这些由连续葡萄糖单元构成的纤维素纤维被碳化成了碳纤维。1892年,爱迪生发明的“白炽灯泡碳纤维长丝灯丝制造技术(Manufacturing of Filamentsfor Incandescent Electric Lamp)”获得了美国专利(专利号:470925)(图1)。可以说,爱迪生发明了最早商业化的碳纤维。 由于原料源于天然纤维,早期的碳纤维几乎没有结构强力,使用中很容易碎裂、折断,即便只是作为白炽灯的发光体,其耐用性也很不理想。1910年左右,钨丝替代了早期的碳纤维灯丝。尽管如此,很多美国专利证实,爱迪生发明碳纤维后的30多年里,改进碳纤维性能的研究从未停止过。然而,这些努力都未能把碳纤维性能提高到令人满意的程度。此间,碳纤维研究停滞不前,处于休眠期。 二、人造纤维化学纤维的出现,为美国高性能碳纤维技术基础科学研究提供了前提 人造纤维化学纤维的出现,把碳纤维技术引入了“再发明(reinvented)”时代。20世纪早期,粘胶(1905)和醋酯(1914)等人造纤维的出现,特别是20世纪中期,聚氯乙烯(1931)、聚酰胺(1936)和聚丙烯腈(1950)等化学纤维的商业化,为美国开创高性能碳纤维技术的基础科学研究提供了前提。 20世纪50年代中期,美国人威廉姆•F•阿博特(WilliamF. Abbott)发明了碳化人造纤维提高碳纤维性能的方法。作为卡本乌尔公司(Carbon Wool Corporation)的委托人,阿博特(Abbott)于1956年3月5日向美国专利局提交了“碳化纤维方法(Method for CarbonizingFibers)”的专利申请(申请号Serials No. 569,391),但此项申请是否获得专利,不得而知。1959年11月12日,阿博特再次提出了同样的专利申请(申请号Serials No. 852,530),1962年9月11日,该项申请获得了美国专利授权(专利号:3053775)。(图2) 阿博特(Abbott)专利的技术要点是:一种生产固有密度高、拉伸强力好的纤维形态碳材料的加工工艺。当时的碳纤维在很小的机械力作用下,就会断裂。阿博特的发明称,其可使碳纤维的碳密度和硬度更高,在机械力作用时保持纤维形态不被破坏;且直径更细,表面更清洁,柔韧性和弹性更好;纤维直径及性能可设计和控制;原料必须采用粘胶、铜氨和皂化醋酸等再生纤维素纤维及合成纤维,不能采用天然纤维。 申请该专利的卡本乌尔公司(Carbon Wool Corporation)是一家当时位于美国加利福尼亚州奥海镇(Ojai, California)的公司,成立于1955年,后被税务部门吊销。由于信息有限,该公司和阿博特(Abbott)本人的详细情况尚无从知晓。 阿博特(Abbott)的专利被转让给了美国巴尼比-切尼公司(Barnebey-Cheney Company)。1957年,巴尼比-切尼公司开始商业化生产棉基或人造丝基碳纤维复丝,但其只能用来生产绳、垫和絮等产品,用于耐高温、耐腐蚀等用途;其可独立用作吸附用活性炭纤维。 自此,高性能碳纤维基础科学研究和工业化技术研发进入了高峰期。 三、高性能碳纤维技术的基础科学研究被确认为“美国历史上的化学里程碑” 美国历史上的化学里程碑(National Historic ChemicalLandmark),是美国化学会(American Chemical Society‹ACS›)开展的一项发掘整理美国有历史影响的化学家和化学事件的活动。各区域分支机构申报本地区曾出现的人物和发生过的事件,美国化学会组织专家考核和认定。 位于俄亥俄州帕尔马市(Parma,Ohio)的葛孚特国际公司(GrafTech International Ltd.)向美国化学会申报了“高性能碳纤维(High Performance CarbonFibers)”项目。该公司的前身是美国联合碳化物公司(Union CarbideCorp.)。2003年9月17日,美国化学会确认,原美国联合碳化物公司帕尔马技术中心(US Union CarbideCorp.’sParma Technical Center)曾开展的高性能碳纤维技术研究,是一项“美国历史上的化学里程碑”;罗格·贝肯(Roger Bacon)1958年发现了“石墨晶须(graphite whiskers)”及其所具有的超高强现象;伦纳德·辛格(Leonard S. Singer)1970年发明了中间相沥青基碳纤维制备技术;他们开创了碳纤维增强复合材料的科学技术基础,是该领域的开拓者。 四、帕尔马技术中心的科学家们开创了高性能碳纤维技术的基础科学研究 19世纪末,美国城市街道的照明靠的是电弧灯。这种灯由两根连接到一个电源上的碳电极组成。带电粒子在两根电极间闪耀放热,形成电弧,释放出强烈的光亮。1886年,美国国家碳材料公司(National Carbon Company)创立,标志着美国合成碳产业的起步,其最早的产品就是电弧灯用的碳电极。1917年,国家碳材料公司与联合碳化物公司(Union Carbide Corp.)合并成立了联合碳化物与碳制品集团公司(Union Carbide & CarbonCorp.)。1957年,美国联合碳化物与碳制品集团公司更名为联合碳化物公司(Union Carbide Corp.)。20世纪70年代末,联合碳化物公司组建了独立的部门生产碳纤维,后该部门被卖给美国国际石油公司(Amoco Corporation),其后,再被卖给美国氰特工业公司(Cytec Industries Inc.)。1995年,联合碳化物公司成立了UCAR碳制品公司(UCAR Carbon Company);2002年,更名为葛孚特国际公司。 20世纪50年代末,美国联合碳化物公司在克利夫兰市建立了帕尔马技术中心(Parma Technical Center)从事基础科学研究。该中心是个20世纪40-50年代流行的大学校园式企业实验室(university-style corporatelabs),其环境风格简约现代、管理氛围自由宽松,聚集了许多学术背景不同、朝气蓬勃的年轻科学家从事自己喜爱的研究。 (一)罗格·贝肯发现“完美石墨(Perfect Graphite)”,奠定高性能碳纤维技术的科学基础 高性能碳纤维技术的基础科学研究发端于1956年。 1955年,罗格·贝肯(Roger Bacon,1926–2007)(图4)获得凯斯理工学院(Case Institute of Technology)固体物理学博士学位。1956年,他加入帕尔马技术中心,直至1986年。 最初,贝肯的研究目标是测量碳三相点(固、液、气态的热力学平衡点)处的温度和压力,这需要在近100个大气压(atm)和3900开氏度(K,约3626.85°C)的条件下进行测量。他用的实验装置与早期的碳电弧灯原理相同,区别只是运行压力更高。研究过程中,他发现,当压力较低时,直流碳弧炉负极上的气态碳生长成了石笋状的长丝。这些长丝就是呈稻草状嵌入到沉积物中的石墨晶须。石墨晶须最长有1英吋(2.54cm),直径只有人的头发的十分之一,却可承受弯曲和扭结而不脆断,其特性令人惊奇。 1960年,贝肯在《应用物理(Journal of Applied Physics)》杂志上就此发表了论文,成为了高性能碳纤维技术基础研究史上的里程碑。贝肯认为,石墨晶须是石墨聚合物,是一种纯粹的碳形式,碳原子排列在六角型的片体中;它是卷起来的石墨片层,其中,晶体学的c轴正好垂直于旋转轴;其柱面的横截面呈圆形或椭圆形。氩气环境中,92atm、3900K(开氏度,约3626.85°C)下,可制成石墨晶须。其拉伸强力、弹性模量和室温电导率分别为20GPa、700GPa和65μΩ·cm,与单晶相似。所以,它虽然不是单晶,但是,它沿长丝轴向表现出了单晶的性状。1960年,贝肯关于石墨晶须的发现发明获得了美国专利(专利号:2957756)(图5)。贝肯当时认为,制备石墨晶须还只是实验室成果,要利用其原理制造出有实用价值的碳纤维,路还很长。 此后十几年的研究,就是要获得低成本、高效率生产具有石墨晶须特性的高性能碳纤维技术。 图5 罗格·贝肯石墨晶须发现和制备石墨晶须的技术发明获得的专利 发现石墨晶须及其特性并发明实验室制备石墨晶须方法的60年后,2016年10月25日,罗格·贝肯入选美国国家发明家名人堂(National Inventors Hall ofFame)。 (二)高强高模碳纤维技术的进步与早期商业化应用 1959年,帕尔马技术中心的科学家们就发明了高性能人造丝基碳纤维的制备技术。加利·福特(Curry E. Ford)和查尔斯·米切尔(Charles V. Mitchell)发明了3000°C高温下热处理人造丝制造碳纤维的工艺技术,生产出了当时强度最高的商业化碳纤维,并获得了专利(专利号:3107152)(图7)。美国空军材料实验室(U.S. Air Force MaterialsLaboratory)很快就采用这种人造丝基碳纤维作为酚醛树脂的增强体,研制了用于航天器热屏蔽层的复合材料。其作用是,返回大气层时,导弹或火箭壳体与大气剧烈摩擦,表面形成高温,酚醛树脂吸热后缓慢分解,碳纤维使酚醛树脂不被烧毁,保证弹箭完成大气层中的行程。1963年,碳纤维增强树脂复合材料技术研究取得实质性突破,复合材料技术跨入“先进复合材料”时代。此前,树脂基复合材料的增强体一直被玻璃纤维和硼纤维垄断。相较玻璃纤维和硼纤维,碳纤维作为增强体,性价比更佳。 1964年,卫斯理·沙拉蒙(Wesley A. Schalamon)和罗格·贝肯一起,发明了商业化制造高模量人造丝基碳纤维的技术;2800° C以上高温下“热拉伸(hot-stretching)”人造丝,使石墨层取向与纤维轴向几乎平行;技术关键是,在加热过程中拉伸纤维,而非在达到高温之后再进行拉伸。这种工艺使纤维模量提高了10倍,是制备具有与石墨晶须相同性能的碳纤维的关键一步。1965年末,采用该技术制造的Thornel 25牌号的碳纤维投入市场。此后10多年里,美国联合碳化物公司采用高温热拉伸工艺研发出了一系列高模量碳纤维,Thornel系列产品的模量达到了830GPa。沙拉蒙和贝肯的这项发明于1973年获得了专利(专利号:3716331)。 (三)伦纳德·辛格发明中间相沥青基石墨纤维制造技术 高温热处理过程中,材料内部结构会从无序变为有序。含碳物质,1000°C下,可被碳化成含碳量约99%的碳材料;2500 °C时,可被碳化成含碳量100%的碳材料。 然而,并非所有含碳物质经高温热处理后,都能得到真正的石墨。只有那些结构足够有序、可形成石墨晶须的含碳物质,才能经高温热处理制成具有高导热、高导电和高硬度等特性的纯石墨。聚丙烯腈和人造丝都不属于这类含碳物质,故不可能经高温热处理制成石墨纤维。要制造更高性能的碳纤维,必需一种新材料作为前驱体。 伦纳德·辛格(Leonard S. Singer,1923-2015,图9)为此开辟了道路。20世纪50年代中期,辛格从芝加哥大学(University of Chicago)获博士学位后,加入帕尔马技术中心,从事电子自旋共振研究。 虽然没有任何碳或石墨研究经验,但他却试图研究碳化的机理。加热石油和煤等原料,就产生了沥青样物质。石油基和煤基沥青是制造碳和石墨制品的基础原料。沥青含碳量90%以上,远高于人造丝和丙烯腈。它们是分子量分布很广的数百种芳烃类物质构成的复杂混合物,是重要的高碳含量前躯体有机物。同期,有研究表明,这类混合物中的多数物质是各向同性的,通过进一步聚合,可使其分子以分层的形式得以取向。 1970年,辛格解决了制备高模量沥青基碳纤维的关键技术;其技术核心是,液晶或中间相是实现高模特性的关键。中间相沥青重量的80-90%可转化为碳,且具有极佳的导热、导电、抗氧化、低热膨胀率等性能。他成功地将原料沥青处理成了中间相或液晶态沥青,进而通过流动和剪切使其实现取向。辛格和助手艾伦·切丽(Allen Cherry)设计了一台“太妃糖牵引(taffy-pulling)”机,并用它给粘稠的中间相沥青施加张力,使其分子重新排序,然后进行热处理。这项技术取得了成功,他们制得了高度取向的石墨纤维。1975年,联合碳化物公司开始商业化生产Thornel P-SS牌号的连续长丝;1980-82年,其模量已达690-830GPa。1977年,辛格获得了石墨纤维及其制造工艺的专利(专利号:3919387)(图10)。美国空军材料实验室(AFML)和美国海军(NSSC)资助了辛格的研究。 图10 伦纳德·辛格制备高中间相含量沥青纤维的专利 沥青虽是一种相对廉价的原料,但其制成的碳纤维,成本差异却非常大。模量较低、非石墨化、较廉价的中间相沥青基碳纤维,用于制造飞机刹车片和增强水泥。具有超高模量和超高热导率等高端性能且成本昂贵的中间相沥青基石墨纤维,被用于制造火箭喷管喉衬、导弹鼻锥和卫星结构等关键零部件,是不可替代的关键航天材料。 五、美国聚丙烯腈基碳纤维技术的错过与回归 人造丝、聚丙烯腈或沥青,是碳纤维的三大前驱体。其中,丙烯腈基碳纤维(Polyacrylonitrile ‹PAN›-based Carbon Fibers)的综合性能特别突出,已在许多领域取代了人造丝基碳纤维。碳纤维性能得以跨越式提升的原因,就是发明了更好的丙烯腈纤维。英国和日本的科学家最先研发出了纯丙烯腈聚合物,加工中,其分子链中连续的碳原子和氮原子链可形成高度取向的石墨样层,从而降低了对热拉伸的需求。 1941年,美国杜邦公司发明了丙烯腈纤维技术。1950年,杜邦公司开始商业化生产“奥纶(Orlon)”品牌的丙烯腈纤维。1944-45年,联合碳化物公司的温特(L. L. Winter)就发现了丙烯腈在灰化温度下不熔融的特性,并认为其可被制成纤维形态的碳材料。1950年,胡兹(Houtz)发现,在空气中、200°C下热处理丙烯腈纤维,制得的产品具有很好的防火性能。后来,类似的产品被称为“黑奥纶(Black Orlon)”。原本,这些发现应该是研发高性能PAN基碳纤维技术的出发点,但由于过度关注人造丝基碳纤维技术研究,美国科学家们错过了PAN基碳纤维技术的发展机遇。 在西方科学家几乎不知情的情况下,日本科学家一直在默默地开展PAN基碳纤维技术的研究。1961年,日本产业技术综合研究院(Government IndustrialResearch Institute)的進藤昭男(Akio Shindo),在实验室中制得了模量140GPa的PAN基碳纤维,高出人造丝基碳纤维模量的3倍。進藤昭男的发明得到了日本科学届和工业届的迅速推广,日本东丽工业公司(Toray Industries)开发了性能极优异的丙烯腈原丝,并建立了碳纤维中试工厂,从此占据了PAN基碳纤维技术的领导地位。1970年,日本东丽公司与美国联合碳化物公司签署技术合作协议,后者以碳化技术交换前者的丙烯腈原丝技术,并很快生产出了高性能PAN基碳纤维,从而把美国带回了碳纤维技术的前沿。 六、结论 综观美国碳纤维技术的早期发展历程,以下规律和事实值得注意: (一)碳纤维诞生于电光转换装置的产品发明。 19世纪中后期,是科学革命和工业革命的成果爆发期,大量的科学发现和技术发明涌现出来,为人类社会进入现代化时代贡献了文明成果。碳纤维技术正是在这样的时代背景下产生的。为了点亮暗夜,斯万和爱迪生发明了将电转化为光的电灯,作为电灯的发光体,碳纤维悄然诞生。 初生的碳纤维,并不引人瞩目。因为,电灯是那时人们关注的焦点。尽管碳纤维的重要性被暂时忽略,但只要是有生命力的事物就一定会走上出生、成长、成熟、衰亡和重生的规律性过程。技术、产品与生物体一样。 (二)高性能碳纤维技术诞生于基础研究的科学发现。 石墨晶须,及其特性和微观结构,是在基础科学研究中发现的。这一发现,为高性能碳纤维制造技术研究提供了方向和目标。20世纪50-70年代,基础科学研究的发现和大量工程技术的发明,对于高性能碳纤维技术的成熟和完善,功不可没。 (三)高性能碳纤维技术领域存在着“美日同盟”。 日本科学家進藤昭男之所以萌生开展碳纤维研究的念头,是因为受到了美国该领域技术进展报道的启发。日本东丽公司成功实现PAN基碳纤维商业化后,与美国联合碳化物公司签署原丝与碳化技术互换协议,使两家公司同时拥有了高性能碳纤维生产的全过程技术。此后,其它日本公司也生产出了性能优异的丙烯腈纤维前驱体。日本住友公司(Sumitomo Corporation)为美国赫尔克里斯公司(Hercules Incorporated)提供丙烯腈纤维前驱体,并经英国考陶尔斯公司(CourtauldsPLC)授权生产碳纤维。1美日技术合作使高性能碳纤维技术得以快速研发并广泛应用。今天,美国波音飞机采用的都是日本东丽公司生产的碳纤维。2015年,日本东丽公司又把从丙烯腈原丝到碳化的全过程碳纤维生产工厂建在了美国,以满足波音公司生产先进飞机对碳纤维快速增长的需求。美日的技术互动,是推动高性能碳纤维技术不断向前沿发展的重要因素之一。
  • 《从泰先和中恒的破产谈碳纤维“全产业链” ——五论国产碳纤维产业化之路》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-26
    • 前几天严兵的“从浙江泰先、沈阳中恒的破 产案,谈碳纤维产业的发展”分析了这两家公司应经营不善导致破产,特别是指出碳纤维的生产成本高于销售成本是其主要主因,并指出国内还有很多僵尸碳纤维企业即将步入破产的行列。我认为这篇小文阐述了事实,但对碳纤维企业的生存问题没有进行深入的剖析。 1、碳纤维生产企业分类及其产品应用对象和需求量 在探讨泰先和中恒破产原因之前,本文需要先澄清一些基本概念。 大家在文中经常谈及碳纤维企业,其实碳纤维企业包括两类,一类是真正的碳纤维生产企业,多数则是碳纤维复合材料制品生产企业。这两类企业的生存环境迥然不同,前者需要巨额投资,且影响参数众多,运行参数随所用设备和原材料而变,无可借鉴的经验,往往运行数年,仍无法生产出满足用户要求的产品,正是这类企业面临着破产的危机。后者相对而言投资较少,通常可以在较短的时间内即可生产出满足用户要求的复合材料制品,达到收支平衡,进而盈利。 其次对国内的碳纤维生产厂家生产,按所所采用的技术路线可把现有的生产线分为三类,虽然对碳纤维专家,这是基本常识,但对多数碳纤维复合材料界的业内人士,并不一定很清楚。这三类技术路线所建立的生产线各生产不同的产品,用于不同的工业领域,互相间不可能兼顾,如表1所示。 其中第I类是从上世纪70年代起多数国内碳纤维生产厂家采用的生产技术,也是国内生产碳纤维最多的品种,同时也是民品市场销售和使用的主要品种。但生产的碳纤维质量和成本始终无法达到东丽的水平,也是被迫以“白菜价”销售的主要碳纤维品种。这里面有多方面的原因,但一直以低于成本价销售,致使无法长期稳定生产是主要原因之一。持续这种状态,仅从技术上攻关恐怕很难改变这种状态。第II类是最近比较时髦的技术路线,中复神鹰经持续不断的努力,攻克了干喷湿纺的技术关键,基本上达到了东丽的水平,使其产品可以与东丽T700S并驾齐驱,当然同样面临着与东丽T700S的价格战。第III类湿喷湿纺大丝束技术在国际上只有少数企业掌握,东丽虽经多年开发,均未攻克,最后转向收购ZOLTEK。国内精功已成功开发了这一技术,并生产出了产品,但性能和稳定性与国外产品有差距,由于其主要应用对象——风电叶片梁板的设计与选材开发权掌握在VESTAS手里,从而无法得到应用。 2、国产碳纤维为什么只能卖“白菜价” 作者与国产碳纤维的销售人员对民用碳纤维的价格形成进行了探讨,民用市场主要使用T300-12k级与T700-12k级碳纤维(占比高于90%),而其中性价比最高的产品是东丽的干法T700S-12k,长期售价为200元/kg,所以其他产品的售价只能参照T700S来定位自身的价格,其他T700S-12k级碳纤维的售价为140元/kg,T300-12k级碳纤维长期以来是台丽的天下,它也只能参照T700S-12k的价格定为110元/kg,只有微利或更可能是亏本销售,当然其他国产T300-12k级碳纤维就只能以100元/kg的“白菜价”销售(今年随着国外碳纤维价格的调整,普遍售价有所提高);而目前国产碳纤维企业的生产成本普遍高于销售价,国内碳纤维厂家为提高质量和降低成本,多少年来一直坚持不懈地进行攻关一直进展不大,而且近期恐怕很难突破。照此逻辑如果没有其他办法,所有的国产碳纤维企业均会步泰先与中恒的后尘相继破产。 3、碳纤维生产线分类和碳纤维在不同领域应用的种类、价格与需求量 参照林刚先生的“2017年全球碳纤维复合材料市场报告”的数据和个人对市场的了解,表2给出了不同工业领域使用的碳纤维品种、每公斤参考价格及目前与5年后估计的需求量。表3给出了不同工业领域每公斤碳纤维、预浸料和制品的参考价格。 表2给出了碳纤维在不同工业领域的应用都有不同程度的增长空间,当然目前除军机和部分民用低端产品使用国产碳纤维外,绝大部分都是国外碳纤维厂商和台丽的天下,VISTAS的风电产品在大规模增长,其碳纤维复合材料梁板生产基本上落入了国内厂商手中,包括澳盛和光威获得了很多大的订单,这对国内碳纤维复合材料制品厂家是利好的消息,但基本上和国产碳纤维生产厂家无关。 4、碳纤维企业的出路 鉴于目前国内碳纤维企业生产碳纤维的成本普遍都高于140元/kg,不亏本经营的唯一出路是成为航空航天行业的供应商,这也是本世纪初众多投资商投资碳纤维企业的初衷。由于成为航空航天产品供应商的门槛、需求量的限制以及进行型号鉴定的机遇,只有少数(2~3家)企业有幸进入了供应商的行列。对于后起的碳纤维生产企业已经失去了这一机会,这些企业将何去何从是本文讨论的重点。从表3列出的碳纤维、预浸料及制品的价格来看,有3条出路: 1) 对碳纤维进一步加工,以织物与预浸料出售,提高其价值,这也是像台丽这样的企业所走的道路。这条道路其实也很艰辛,台丽的产品性能与价格基本上是业界的标杆,并已占据了现有的国内市场,要想从中分一杯羹,只能打价格战。 2) 制成制品,提高其价值。对于目前消耗一万多吨的国内民品市场,已经有众多的碳纤维复合材料制品生产企业,碳纤维生产企业用性能逊于国外的纤维采用类同的设计与制造工艺生产出的制品与它们竞争,只能是以卵击石。钱云宝先生经常说:“大家都能做的我不做”,大概就是这个道理。 3) 开辟新的碳纤维复合材料应用领域,风电叶片是目前增长最快的应用领域,由于梁板拉挤成型的出现,碳纤维用量急剧增加,但目前这一技术是由VESTAS采用台丽的湿法大丝束碳纤维(III类生产线)开发的,而且产品附加值比较低(原材料成本占比近50%)其他碳纤维企业如果要进入这一领域,只能购买台丽或其他国外的碳纤维进行加工,结果碳纤维用量的增加基本上与国产碳纤维无关,也就与国产碳纤维产业化无关。据说有人正在利用国产湿法大丝束碳纤维研发风电叶片用梁板,如果研发成功,确实是国产碳纤维产业化的一个机会。 4) 对国内碳纤维生产企业最后的机会只能是尚未出现定型产品,但未来可能会大量使用碳纤维的工业领域。表2中列出了压力容器(包括氢燃料储气罐)、轨交和汽车领域以及其他有轻量化需求的应用领域,这些领域的应用前景已经明朗,由于成本和其他一些因素,尚未出现被市场接受的“买得起复合材料产品”。 国外对这些领域正在进行攻关,国内碳纤维企业如何参与?指望国外用户采用国产碳纤维进行攻关只能是痴心妄想,一旦国外攻关成功(就像VESTAS在风电叶片领域的攻关),这些领域的碳纤维复合材料制品又将是国外碳纤维的天下,国内碳纤维复合材料制品生产厂商再一次会成为这些领域碳纤维复合材料制品的加工商,我们还会欢呼“碳纤维的春天到了”。一旦有什么风吹草动,国外把碳纤维供应掐断,会不会出现类似“芯片之痛”的“碳纤维之痛”呢?我们的大飞机、轨交车辆、新能源汽车等等用什么来生产呢? 5、国产碳纤维不能用于制造高端产品吗? 碳纤维生产企业的老总说:我们的精力必须且只能关注如何提高碳纤维的质量和降低生产成本,以便使国产碳纤维在性能和生产成本方面优于国外碳纤维,能成功将它们替代,愿望是好的,确实是努力方向,但现实是我们能等到那一天吗?国内众多碳纤维企业已作出了多年努力,虽然有少数企业可以把T300-3k和6k级碳纤维的性能做到基本满足军机的要求,实现批量化生产,但T300-12k级碳纤维始终没有达到台丽的水平,更何况东丽的水平。可见碳纤维的生产技术是如此复杂,即使实现了,国产碳纤维也只能与国外碳纤维打价格战,结果将是苦涩的。国产碳纤维得不到高端应用,只能长期亏本生产和销售,这样的状态是否能实现碳纤维生产企业老总的预期呢? 如上所述,国产碳纤维实现产业化的机会只能是把“蛋糕”做大,通过扩大碳纤维的应用范围,增加碳纤维用量来实现。方向就是进入有光明前景,且尚未开发出“买得起的复合材料制品”的高端应用领域(即有迫切轻量化需求的工业领域)。目前国内外都在关注这些领域,并正在开发攻关。要知道这些用户在开发时通常都愿选用质量稳定、价格适中的国外碳纤维,国产碳纤维不在它们的考虑范围内。如果国产碳纤维生产厂家只关注修炼“提高质量和降低成本”的内功,不积极参与开发,产业化将会越来越远。国产碳纤维生产企业必须主动用自己生产的碳纤维来研发出高端应用“买得起的复合材料产品”,通这些产品的批量化生产,来实现自己生产的碳纤维的大量销售。要知道高端产品的成本构成中原材料成本通常只占20%,原材料价格略高一些在自己开发的产品中是可以接受的。只要开发出的产品被市场接受,并形成批量生产,就可以在生产和使用过程中同时实现碳纤维的质量提高和成本降低。当然这条道路异常艰难,也需要假以时日,但也只有这条路才能实现国产碳纤维的产业化。当然,在极度缺乏复合材料设计人才的当下,汇集这些人才与设备储备也是一项艰巨的工作。 很多碳纤维生产厂家都认为只有把自身的碳纤维质量提高到东丽的水平,才能应用到高端应用,从来也没有想过将现有水平的碳纤维用于开发高端产品。而恒神则打破了这一思维模式,在近年来就采用看似性能不被专家认可的、市值100元/kg的恒神碳纤维,开发出了一些价值几千元/kg被用户接受的高端轻量化制品,且通过了一系列严格的地面试验考核,即将批量生产。虽然这些制品体量不大,但证明了一点,即使性能低于国外碳纤维,价格高于国外碳纤维,同样可以设计和制造出性价比被用户接受的轻量化产品(早期东丽的碳纤维性能并不好,同样可以用于民机结构),从而可以实现恒神碳纤维的长期稳定销售。千里之行,始于硅步,大量恒神碳纤维的销售,就是依靠一个一个产品的开发,形成小规模稳定销售,积少成多,开发的产品多了,就形成了大规模的销售。用较低性能的碳纤维开发高端产品的范例是恒神与中车长客合作采用恒神生产的原材料(包括纤维、织物、自己开发的阻燃树脂等)和恒神创新的制造工艺开发出满足轨交行业设计规范(安全性)要求减重近30%的复合材料地铁车体,该车体结构已通过了严格的地面试验考核,即将上线运行。研发中采用的就是市值100元/kg的工业级恒神碳纤维。在地铁车体的开发过程中,恒神的全产业链技术团队基于丰富的航空航天应用(包括设计和制造工艺)的经验针对轨交车体的特殊行业要求,采用创新性设计与制造工艺实现的。该地铁车体虽然暂时还达不到“买得起”的水平,但通过碳纤维复合材料在地铁车体的应用实践取得了丰富的经验教训,在此基础上进一步研发,今后有可能开发出轨交领域“买得起的复合材料结构”,进而实现恒神碳纤维原材料的大量销售。 对于高端应用,为满足安全性要求对所用材料体系(包括纤维与树脂组合)要进行相当复杂的严格鉴定(通常要进行从材料到元件、组合件直至全尺寸结构件的积木式地面试验验证和在线运行考核),用户一般不会为了原材料价格的少量差异进行繁琐的等同性鉴定流程(保证性能与工艺的相容性),采用替代材料,这才是国产碳纤维生产企业需要全产业链的真谛。 碳纤维应用的高端产品的特点一定是对变形有严格要求,同时对减重也有迫切需求,特别是形状和受力复杂的杆板壳结构,这些是高端碳纤维复合材料制品的基本特点,这些产品的附加值比较高,通常原材料成本占比往往小于30%。 目前国内碳纤维生产企业已逐渐接受了钱云宝先生倡导的“全产业链”理念,很多企业也正在尝试做全产业链的碳纤维企业,但仔细了解这些企业,可以发现它们所建立的碳纤维生产线所生产的产品与其试图进入的工业领域对碳纤维的需求往往是不一致的,例如希望生产碳纤维电缆芯,却建立湿法小丝束的生产线;上游生产湿法小丝束碳纤维,下游生产湿法大丝束的风电叶片梁板;上游建设湿法大丝束生产线,下游却致力航天结构研发生产;上游生产干法小丝束,下游致力需要湿法大丝束的汽车制件;自己的下游不用上游生产的碳纤维,致使上游的碳纤维没有销路,下游产品开发所需碳纤维受人制约,这样的全产业链有何意义? 当然碳纤维生产企业在进入后端应用时,通过购买其他厂家的碳纤维生产复合材料制品来实现尽快盈利也是可以理解的,但国产碳纤维的产业化去哪了?这与“芯片之痛”遇到的现象有何区别?利用芯片的产品铺天盖地,而芯片的供应商全部来源于国外,“中兴事件”发生后国外断供,国内一片哀鸿。碳纤维复合材料企业是否也会出现类似的情景呢? 6、结论 国产碳纤维生产企业的生存之道,不能局限于修炼内功,致力于提高质量和降低成本,然后与国外碳纤维去拼价格,抢市场。必须用目前已基本能用的国产碳纤维去开拓工业领域应用的新领域,把“蛋糕”做大,在新开拓的应用市场找到国产碳纤维的生存空间,实现自己的价值,在实现价值的同时提升国产碳纤维的质量和降低成本。在寻找生存空间时,国产碳纤维企业必须发挥积极作用,不能寄希望于工业领域的新用户主动使用国产碳纤维,为此国产碳纤维企业具备上下游密切配合的全产业链是必备条件。