《基于碳纳米管的微分电阻脉冲传感器检测单个分子和离子。》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-03-06
  • 本文提出了一种基于碳纳米管(CNT)的微分电阻脉冲传感技术在奈米射流芯片上检测单分子和碳原子的新方法。建立了多通道RPS系统的数学模型,对基于网络的RPS信号进行了评价。通过高分辨率和高信噪比,可以成功地检测到单个阳离子、罗丹明B染料分子和ssDNAs。用15和30个核苷酸对ssDNAs进行区分。实验结果还表明,通过CNT对带负电荷的ssDNAs进行移位,降低了CNT通道的电阻,而带正电的阳离子和罗丹明B分子的易位增加了CNT的电阻。本研究开发的基于碳纳米管的纳米流体装置为单分子/离子检测提供了新的途径,并为DNA测序提供了一种潜在的策略。

    ——文章发布于2018年3月5日

相关报告
  • 《基于碳纳米管的纳米复合材料的统一等效电路模型。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-05-29
    • 碳纳米管在纳米复合材料中形成了一个复杂的网络。在网络中,纳米管的结构是多种多样的。碳纳米管可能是卷曲的或直的,它可能是平行的或交叉的。因此,碳纳米管基复合材料具有电感、电容和电阻器的综合特性。在这项工作中,假设碳纳米管基复合材料都附着在RLC内部电路中。为了验证这一假设,我们制作了三种不同的复合材料,即多孔碳纳米管/聚偏氟乙烯(MWCNT/PVDF)、多壁碳纳米管/环氧树脂(MWCNT/EP)、多壁碳纳米管/聚二甲基硅氧烷(MWCNT/PDMS)。抗性和介电损耗角正切(tanδ)材料在直接测量和交流电。tanδ高度的测量表明,价值影响MWCNT的复合材料的体积分数。实验结果表明,所提出的RLC等效电路模型能够充分描述纳米复合材料中MWCNT网络的电性能。RLC模型提供了一种检测碳纳米管电感和电容的新途径。此外,该模型还表明,基于碳纳米管的复合膜可用于开发无线应变传感器。 ——文章发布于2018年5月24日
  • 《利用纳米孔传感技术,物理学家可以检测单个粒子的细微变化》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-02-25
    • 电阻脉冲纳米孔传感的原理是,电流通过纳米孔(绿色,左边)时的微小变化可以用来了解纳米孔内的分子。研究人员能够用不同的保护剂(配体)捕获纳米级的金簇,这些配体会在金核周围移动,从而产生复杂的当前步骤。 来源:联邦 弗吉尼亚联邦大学物理系的研究人员发现,一种被称为纳米孔传感的技术可以用来探测微簇变化,即比分子大但比固体小的物质块。 人文科学学院实验生物物理学和纳米科学副教授Joseph Reiner博士说:“纳米孔的作用就像极其微小的传感器,每边只有几个纳米。”“这种大小尺度让我们能够观察到当一个配体分子改变簇的大小时。实时检测这些变化的能力——当它们发生的时候——是一种新的和令人兴奋的东西。 赖纳和物理学教授马西莫·f·贝尔蒂诺博士,以及VCU的学生鲍比·考克斯、彼得·威尔克森和帕特里克·伍德沃斯在《美国化学学会杂志》上发表了一篇论文,描述了这一发现。 赖纳说:“这是一个新发现,因为在单个粒子上实时检测这些变化的方法实在不多。”“这打开了观察纳米表面各种有趣现象的大门,这是许多化学家在应用和纯研究领域都非常感兴趣的一个领域。” 这一研究为簇簇的活性提供了新的线索,簇簇是一种反应性极强的物质,被认为是催化或催化剂加速化学反应的有趣对象。 “了解分子在纳米团簇上的行为有助于我们了解它们的催化特性,”Bertino说。“到目前为止,人们认为分子在簇表面是静止的。我们的实验表明,相反,分子以非常快的速度改变它们的构型和位置。这为这些物质的化学性质打开了新的视角。 贝尔蒂诺说,研究小组的发现可能会带来令人兴奋的新发现。 “现在有几条可能的小巷正在开放。一个是集群增长。没有人能很好地理解这些东西是如何产生的。另一个是帮助调整他们的资产,”他说。“到目前为止,人们种植这些东西并使它们具有反应性,但并不总是清楚这是如何发生的。”从本质上说,飞镖是用来解决这个问题的,人们希望其中一个飞镖能粘住。这项工作允许我们查看一个定义良好的集群大小,并通过一次更改一个参数来处理它。 通过更好地观察这些簇及其行为,研究人员希望能够更好地了解催化剂如何改进,从而更有效地发现和合成药物。 故事来源: 材料由弗吉尼亚联邦大学提供。注:内容可根据风格和长度进行编辑。 期刊引用: 鲍比·考克斯,帕特里克·h·伍德沃斯,彼得·d·威尔克森,马西莫·f·贝尔蒂诺,约瑟夫·e·雷纳。利用电阻脉冲纳米孔传感技术观察了硫代酸盐包裹的金纳米团簇在配体诱导下的结构变化。美国化学学会杂志,2019年;DOI: 10.1021 / jacs.8b12535 ——文章发布于2019年2月21日