《科学家对古近纪海洋表面温度变化机制提出新见解》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: mall
  • 发布时间:2018-07-25
  • 近日,《自然- 地学》在线发表了一篇关于古近纪海洋表面温度的文章。文章重建了从 4300 万年前到 1800 万年前北大西洋的海洋表面温度变化,结果显示在 3400 万年前在长达 200 万年的时间段里南北半球气候的差异性演化,从而进一步揭示了海洋环流变化对气候系统的巨大影响作用。

      古近纪( 6500 万 -2300 万年前)是地球气候系统演化的重要时期。零星的温度记录显示此时期是地球气候历史上的炎热期。很长时间里,大陆上都没有永久冰川覆盖。而在大约 3400 万年前即著名的始新世 - 渐新世转折期,经过之前的缓慢全球降温,永久陆地冰川开始在南极洲形成(北半球格陵兰冰川直到 300 万年前才形成),大约同一时间,环南极洋流通道由于板块构造运动也开始打通,大致形成了现代意义上的海陆分布、海洋环流系统及海洋水体结构。

      海洋环流系统中,大西洋经向翻转环流,表现为海洋表层环流由南半球穿过赤道流向北半球而海洋底层环流流回南半球,在现代气候突变事件中起着重要的作用,包括亚洲的季风环流变化都认为和此密切相关。因此大西洋经向翻转环流变化的机制及预测是当今海洋学和气候变化研究的热点问题。迄今为止,对于北半球(北大西洋深层水的形成)还是南半球(环南极上升流的形成)控制翻转环流还存在着较大的争议。目前大西洋经向翻转环流的演化历史也并不清楚。而在始新世 - 渐新世转折期,由于南极冰川和环南极洋流通道刚开始形成,这为研究南半球在翻转环流中的作用提供了一个理想的检验场所。实际上,研究人员已经预测到由于南极冰川和环南极洋流通道的形成会引起大西洋经向翻转环流的增强,从而导致北半球升温而南半球降温的差异性温度演化。但是由于底部洋流的冲刷作用,此关键时段的海洋沉积物在北大西洋多数没有保存下来,因而此预测还停留在假设阶段,迄今为止还没有古气候记录验证南北半球海表温度在始新世 - 渐新世转折期的差异性发展。

      此次研究利用了国际大洋钻探项目 2012 年在加拿大纽芬兰海域获取的 200 米海洋沉积物,首次重建了 2500 万年长( 4300 万年前到 1800 万年前)的古近纪温度记录,并包含了关键的 3400 万年前的始新世 - 渐新世转折期的气候信息。记录证实了古近纪是地球气候历史上的炎热期。文章指出北大西洋的 25 度海温等温线在古近纪和当代相比向北移动了 15 个纬度(超过 1500 公里)。而在这 2500 万年间,此海表温度记录显示了在绝大多数时间(除了始新世 - 渐新世转折期)里和海洋底层温度呈现一致的变化,揭示了气候系统的协同变化。而在始新世 - 渐新世转折期的 200 万年间,北大西洋海温并没有随着南极冰川的形成而显著降温,而是呈现出极其缓慢降温的趋势。此次研究证实了南北半球温度在始新世 - 渐新世转折期的差异性演化,因此支持南半球对大西洋经向翻转环流的更重要的控制作用, 并进一步揭示了当气候边界条件(南极冰川和环南极洋流通道形成)显著改变时,气候系统需时( 200 万年)才达到新的平衡状态。

      此项研究由来自香港大学、中国科学院地球环境研究所、浙江大学和英国南安普顿大学的学者共同完成,由科技部、基金委、中国科学院、香港研究资助局、英国自然环境研究理事会及大洋钻探计划中国办公室共同资助,国际大洋钻探计划提供海洋样品。

相关报告
  • 《科学家提出重建全球海洋温度历史变化的方法》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2019-02-11
    • 海洋吸收了大部分由于人为排放温室气体而储存在气候系统中的多余能量,导致热膨胀和海平面上升。因此,海洋在地球能量平衡中起着重要作用。对未来人为变暖的观测限制关键取决于对过去海洋热量含量(OHC)变化的准确估计。 然而,在20世纪90年代之前,大多数海洋温度测量值都不超过700米。而自2006年以来,利用Argo系统才实现近乎全球范围的数据覆盖,其浮标全部部署深度达2000米。早期的观测结果在地理分布上更为稀疏,仅限于深度较低的区域(船载电导率、温度和深度演变除外),且不足以在20世纪50年代之前对海洋热含量(OHC)进行准确的全球估算。 法国国立空间研究中心的研究人员提出了一种方法来重建全球全深度覆盖的海洋温度变化。基于观测数据,研究人员量化了从1871年到2017年被动温度和OHC的时空变化。“被动”是指假设温度异常表现为被动示踪剂集在海面上通过时间平均气候海洋运输过程进入海洋内部,包括平流、混合和湍流扩散。这些时间平均过程通过格林函数(GF)表示,它们将表面属性与海洋内部的表面属性联系起来。 研究人员从1871年开始重建OHC,结合了观测到的海面温度的时间序列和GF。对于1995-2017的重建使用了3D海洋温度观测值。 研究发现全球2000米以上的海洋在此期间吸收的热量为0.30±0.06 W/m2,2000米以下为0.028±0.026 W/m2,年代波动较大。自1871年以来的总OHC变化估计为436±91×1021 J,且在1921-1946(145±62×1021 J)期间增加,与1990-2015年期间一样大。通过与直接估算进行比较,推断在1955-2017年期间,由于海洋运输变化引起的热量传输,导致了一半的大西洋变暖以及低纬度到中纬度的热膨胀海平面上升。 (李亚清 编译)
  • 《全球变化模式以及海洋表面温度和叶绿素a的变化》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2018-10-18
    • 了解海洋变化的时空格局对于海洋可持续发展、海洋保护与海洋管理而言非常重要。研究人员采用的预测模式受到天气和气候变化的影响,这些变化发生在几天到几千年的时间范围内。虽然在长时间尺度上改变气候非常重要,但大多数人类活动和规划仅限于较短的时间尺度,通常不到十年。而几年到几十年的变化及其模式将对所有海洋活动的可持续性和海洋生计产生直接影响。在这些较短的时间尺度上了解所观测到的海洋状态空间格局、趋势与变化,对于补充管理政策、开展海洋监测和制定海洋规划工作非常重要。 海洋表面温度的变化与其他变量的变化有关,包括如叶绿素a浓度(Chl-a)、初级生产力、物种生理反应和物种分布等生物变量。Chl-a的时空变化模式及其与温度之间的关系,直接将气候变化与海洋生态系统的动态联系起来。虽然全球平均气温正在上升,但在不同时间尺度上的变化趋势和方差方面,不同区域的不同地点都存在着差异。这同样适用于初级生产力和其他海洋变量的变化。了解重要海洋变量在十年时间尺度上的变化模式与变化情况,是我们适应海洋状态变化能力的关键组分。虽然长期平均条件的变化受到了最多的关注,但还没有对这些平均值周围的年代际变化进行评估,那我们就不太可能成功应对观测到的气候影响及预测到的未来气候影响。短期变化可能压倒了许多地区的平均变化,导致短期事件的发生,如海洋热浪、当地生产力与生态系统结果变化以及长期趋势方向的改变。 海表温度(SST)和叶绿素a浓度(Chl-a)通常是相关的。海洋表面的变暖增加了上层海洋的温度分层,并且可能与表面混合深度的减少有关。较温暖的温度倾向于增加Chl-a,而增加的辐照度或降低的营养物可用性倾向于减少Chl-a。根据每个因子的大小,浮游植物细胞的Chl-a将发生变化(称为“光驯化机制”)。细胞Chl-a的这些变化可能与初级生产的变化无关。在一些情况下,混合层深度的加深可能增加营养物到混合层的垂直传输,可能导致与浮游植物分裂速率增加相关的Chl-a增加。越来越多的证据表明,在某些地方,风速增加可以克服由于变暖引起的任何潜在分层增加,并产生增加的Chl-a。然而,海洋中的这些过程在多个空间和时间尺度上是可变的,这对生态系统动态具有重大影响。了解SST和Chl-a的年度变化的模式,是对SST和Chl-a多年变化的补充理解。 海洋环境中数十年规模的变化对海洋资源的管理和利用提出了一系列挑战。近期发表在《Scientific Reports》上的一篇文章中,研究人员专门分析了2002年12月至2015年1月期间SST和Chl-a的每日全球卫星观测数据,并特意地试图理解它们的季节变化模式、长期变化趋势以及两者之间的共变关系。研究确定了年度变化发生的位置以及SST和Chl-a的年度变化范围。该研究估计的年度变化是对每个细胞的变异进行了去趋势估计,这与先前的分析形成对比。这些分析量化了海洋分箱区域内的变化,并假设每个区域内没有时间变化。在这项工作中,研究人员通过明确划分这些变异来源以避免混淆。然后,研究团队对比了SST和Chl-a之间的变异模式,并表明观察到的SST和Chl-a之间的共变模式。研究指出,SST和Chl-a之间的正负关系均表明,SST可能不能单独作为全球范围内Chl-a变化的良好预测因子。 该研究使用统计方法分析了14年来海表温度(SST)和海洋颜色(Chl-a)的全球时间变化及共同变化来源,这些统计方法将变化来源划分为年际和年度组分,并明确说明了每日自相关关系。海表温度的变化随着纬度的增加而呈现出明显的递增变异带,而叶绿素a浓度的年度变化则在大多数中纬度地区显示出高变异带。SST和Chl-a的共变模式表明了影响Chl-a变化和变异的几种不同机制。该研究的高空间分辨率分析表明,这些可能在相对较小的空间尺度上运行。有大片区域显示出海表温度变暖和叶绿色a浓度上升,这与显示海表温度变暖和叶绿色a浓度下降的区域形成鲜明对比。SST和Chl-a年度变化的共变模式揭示了较宽的纬度带变化。在较小的时间尺度上,上升流发生的地方往往存在显着的区域异常。在年代际时间尺度上,海表温度、叶绿色a浓度及二者协方差的趋势和变化存在高度的空间异质性,这表明我们必须在适当的区域上进行监测和资源管理。 (於维樱 编译)