《三维量子自旋液体动力学行为研究取得进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-08-01
  •         量子自旋液体是存在于量子阻挫磁性材料中的一种新型物质形态,其新奇之处在于量子自旋液体中的可以衍生出带有拓扑性质的分数化元激发,这些元激发往往具有一些非同寻常的物理性质。然而,由于其强关联、非微扰的特征,目前理论上对这些拓扑元激发的动力学特性认识甚少。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心凝聚态理论与材料计算重点实验室万源副研究员、孟子杨副研究员,与中国科学技术大学的邓友金教授、研究生黄春炯合作,结合大规模量子蒙特卡洛模拟和量子场论的分析,在量子自旋液体动力学的理论研究上取得进展。

      他们结合数值模拟和理论分析研究了量子自旋冰中拓扑元激发的动力学行为。量子自旋冰(如图1所示)是一类典型的三维量子自旋液体,其中的拓扑元激发包含衍生光子(emergent photon) 和自旋子 (spinon)。衍生光子的物理性质类似于量子电动力学中的光子,而自旋子则类似于电荷。他们运用大规模量子蒙特卡洛和随机解析延拓的方法首次直接、定量地刻画了一个模型自旋冰体系中这两类元激发的动力学特征(如图2所示)。在自旋激发谱函数这一实验可观测量中,衍生光子表现为无能隙的共振模式,而自旋子表现为有能隙且弥散的连续谱。这二者均直接证实了此前唯象场论的定性预言,而且可以直接和中子散射和核磁共振等实验结果进行直接对比。他们的数值计算和理论分析的结果,对目前正在快速发展之中的阻挫磁体和量子自旋液体、量子自旋冰等等领域的相关实验工作具有指导意义。

      相关工作发表在最近一期的《物理评论快报》上(Phys. Rev. Lett. 120, 167202 (2018))。这项工作得到了科技部重点研发计划2016YFA0300502、2016YFA0301604,自然科学基金委项目11421092、11574359、11625522、11674370, 中国科学院先导培育项目 XDPB083 的支持。量子蒙特卡洛模拟所需的大规模的并行计算在中国科学院物理所量子模拟科学中心和天津国家超算中心天河1号平台上完成,计算过程中得到了天津国家超算中心孟祥飞博士、赵洋工程师等人的有力配合,在此一并感谢。

相关报告
  • 《中国科学院精密测量科学与技术创新研究院在超冷费米气体非平衡动力学研究方面获进展》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • 近日,中国科学院精密测量科学与技术创新研究院江开军研究团队在超冷费米气体非平衡动力学研究方面取得进展。该团队实验制备了球形幺正费米气体,发现了体系在自由飞行过程中的动力学演化满足标度不变性,并通过测量呼吸模式证明了体系具有SO(2,1)对称性。 幺正费米气体的s波散射长度趋近无穷大,为标度不变体系。当这种气体被装载到一个各向同性的偶极势阱时,体黏度和剪切黏度对体系自由膨胀过程的影响会消失,而体系展现出全方位的标度不变膨胀行为。同时,对势阱中的体系而言,其哈密顿量满足SO(2,1)李代数关系。这预示着体系拥有一些独特的集体激发模式。研究球形幺正费米气体的动力学行为对探讨强关联体系中的非平衡动力学演化较为重要,但在实验上制备这样的气体却颇有挑战性。 该研究利用两束椭圆激光来构建各向同性的光偶极阱。研究通过三透镜系统和PID控制系统对光阱的非球度进行调控,利用特定的梯度磁场来消除重力的影响。进一步,研究借助磁场Feshbach共振技术,调控原子间的相互作用强度,使体系进入幺正区域。在获取6Li原子简并费米气体后,研究利用光阱转移技术将费米气体转移到各向同性的光偶极阱中,并通过蒸发冷却获得超低温的球形幺正费米气体。 研究显示,在自由膨胀实验中,球形幺正费米气体展现出独特的标度不变性。这种性质不依赖方向和温度条件,亦是各向异性体系不具备的。测量发现,体系在不同温度下的内能和势能相等,这验证了幺正费米气体的维里定理。研究观察了体系的呼吸模式,发现了其振荡频率恰好为囚禁频率的两倍,且模式的衰减率低,这为体系具有SO(2,1)对称性提供了实验支持。研究测量了标度不变性被破坏时体系的自由膨胀行为,并在BEC-BCS渡越区间获得了连接化学势与原子密度的有效指数。实验结果与平均场理论计算定性一致。 该研究揭示了球形幺正费米气体的标度不变性,并对具有SO(2,1)对称性的三维超冷费米气体开展了实验研究,为研究具有共形不变性体系的非平衡动力学行为奠定了基础。 相关研究成果被遴选为编辑推荐文章,以Scale Invariance of a Spherical Unitary Fermi Gas为题,发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金、国家重点研发计划、中国科学院相关项目等的支持。
  • 《拓扑绝缘体量子输运性质研究取得进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-01-24
    • 电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修正可强烈抑制磁电导。然而,对于具有辛对称性的电子系统,如拓扑绝缘体、外尔半金属及强自旋轨道耦合半导体,尚无工作研究二阶或更高阶量子效应如何影响磁电导。 中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室/应用物理中心研究员李永庆团队、光物理实验室副研究员李治林与合作者对这一问题开展了实验和理论研究。他们利用双栅调控的高质量三维拓扑绝缘体(Bi,Sb)2(Te,Se)3单晶薄片开展了实验研究。在这种器件中,电子输运性质由化学势可大范围调控的表面态狄拉克费米子主导。实验发现,当载流子浓度降低时,磁电导幅度逐渐增强,并在费米能级接近狄拉克点时达到最大值,这与正交对称系统中磁电导随无序增强被逐渐减弱形成鲜明对比。理论分析表明,这一现象可归结为电子-电子相互作用及二阶量子干涉效应导致的磁电导增强。研究还表明,尽管拓扑绝缘体表面态中存在退相干长度、平均自由程、热长度和磁长度等多个尺度的相互竞争,其低场磁电导可以使用推广的Hikami-Larkin-Nagaoka公式描述,详细的磁电导分析可以深化对拓扑绝缘体中复杂电子结构的认识,包括局域电荷液团产生的电子屏蔽效应、退相干以及与电子-空穴不对称性。相关成果发表在《自然-通讯》上。 上述研究进展还为理解超薄三维拓扑绝缘体的长期令人困惑的输运问题提供了契机。在三维拓扑绝缘体的超薄膜中,上下表面的杂化会改变表面态电子的贝利相位。理论预言随着薄膜厚度的减小,较厚样品中出现的反弱局域化将过渡到超薄膜中的弱局域化,但迄今在实验中很难观察到这一现象。纳米物理与器件实验室研究人员研究了分子束外延生长的(Bi1-xSbx)2Te3的电子输运性质,并可对薄膜的厚度、掺杂水平和化学势等多个参数进行调控。他们发现,在所有实验参数下,垂直磁场中测量的样品磁电导都保持负值,这说明在这些超薄(Bi,Sb)2Te3薄膜中不存在理论预言的全局弱局域化。经分析,这一实验结果可通过样品中存在的长程无序以及电子-电子相互作用和量子干涉产生的二阶量子修正进行解释。研究还表明,拓扑绝缘体超薄膜中的输运性质不仅与具有辛对称性体系中的反弱局域化不同,而且与具有正交对称性体系中出现的弱局域化或弱绝缘体态迥异。相关成果发表在《物理评论B》上。 相关研究工作得到国家自然科学基金、国家重点研发计划、中国科学院战略性科技先导专项(B类)的支持。