在AI for Science这一前沿领域的蓬勃推动下,人工智能技术正以前所未有的速度引领着科研范式的变革,同时也在深刻的改变着我们的日常生活。近年来,随着人工智能技术的高速发展,自动驾驶技术逐渐进入人们的视野。那么,对于一个包含成千上万个元件的大型科学装置,例如粒子加速器,其稳定运行是否也能依赖于类似的“自动驾驶”技术呢?答案是肯定的。科学家们正借助机器学习来实现加速器粒子束的智能调控,从而为高功率强束流加速器的调试和运行开辟新的途径。粒子加速器是探索物质结构和基本规律的关键工具,其运行要求极高的精度。长期以来,加速器的调试与运行高度依赖人工操作,这一过程不仅耗费了大量的人力资源,而且极大地增加了科研的时间成本。机器学习技术的引入为这些挑战提供了新的解决方案。通过训练智能控制系统,机器学习能够显著减少人工干预,提高加速器的运行效率,并为设备控制开辟全新的可能性。
然而,在推进这一技术的过程中,研究者们仍然面临着不少理论和技术上的难题。例如,粒子加速器动力学过程非常迅速,观测器所能获取的大多为稳态数据,而无法完整捕捉动力学演化过程。这一特性使得传统的非线性动力学系统控制理论无法直接应用。此外,由于加速器是一个具有极高自由度的时空演化系统,观测器只能采集到部分变量的信息,这对于控制器的设计和调试带来了极大的困难。与此同时,由于获取加速器的真实运行数据成本高昂,依赖虚拟加速器进行离线训练成为一种可行的选择,但如何实现控制器从虚拟加速器到真实加速器的无缝迁移,仍然是一项重大的技术挑战。