《HZB 科研新突破:新型 SAM 助力锡钙钛矿太阳能电池性能提升》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-08-07
  • 在绿色制造领域,太阳能电池技术一直备受关注。钙钛矿半导体作为用于太阳能电池的新型材料,具有极薄柔韧、制造简单、成本低廉且效率极高等优势。然而,钙钛矿太阳能电池要实现大规模市场化,面临两大难题:一是在几十年内稳定性欠佳;二是性能强大的钙钛矿材料含铅,存在毒性问题。


    在此背景下,HZB 正在研究的锡钙钛矿太阳能电池成为一种有趣且无毒的替代品,其稳定性可能优于含铅太阳能电池,还因特殊电光特性,特别适合用于串联和三重太阳能电池。不过,目前锡钙钛矿太阳能电池距离达到铅基钙钛矿的高效率仍有一定差距。

    当前,锡钙钛矿太阳能电池最底层的接触层多采用 PEDOT:PSS 制备,这一工艺不仅繁琐,还会造成损耗。而在铅钙钛矿中,PEDOT:PSS 层可被自组织单分子层(SAM)替代,甚至创造了新的效率纪录。但此前基于 MeO-2PACz 化合物的 SAM 在锡钙钛矿中的实验效果不如 PEDOT:PSS。

    首席研究员 Artem Musiienko 博士与合作伙伴深入分析了使用 MeO-2PACz 作为锡钙钛矿接触层的潜在问题。通过密度泛函理论计算发现,其产生的界面与相邻钙钛矿晶格排列不均匀,导致大量损耗,相关研究发表在《先进能源材料》杂志上。

    为解决这一问题,研究团队开始寻找更适配的自组装单层(SAM)分子。他们发现了含硫官能团的吩噻嗪(缩写为 Th-2EPT),由立陶宛考纳斯理工大学的 Tadas Malinauskas 博士和 Mantas Mar?inskas 合成。

    实验表明,与 PEDOT 相比,Th-2EPT 能形成结晶度相当的钙钛矿薄膜,尽管晶粒较小。采用 Th-2EPT 制成的 SAM 的锡钙钛矿太阳能电池,性能优于采用 PEDOT 或 MeO-2PACz 制成的对照电池,它可形成极佳界面,最大限度减少复合损失。

    Artem Musiienko 表示:“我们已经证明,通过有针对性的合理分子设计,锡钙钛矿光伏电池的性能可以得到显著提高。”采用 Th-2EPT 的新型锡钙钛矿太阳能电池效率达到 8.2%。这些成果为进一步改进锡钙钛矿界面奠定了基础,也为纯锡钙钛矿叠层太阳能电池的开发铺平了道路。论文第一作者之一 Valerio Stacchini 称:“我们证明更高的性能源于新型 SAM 上生长的钙钛矿的优异光电品质。”

  • 原文来源:https://www.wedoany.com/innovation/19477.html
相关报告
  • 《北大、上交大、西交大等10大高校钙钛矿太阳能电池技术研究突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-11
    • 回首2018年,钙钛矿太阳能电池研究突破报道不断,屡破光电转化效率记录。 钙钛矿,是一种普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3),最早由俄罗斯矿物学家Lev Perovski命名于1839年,自2009年开始被用于太阳能电池研究,《科学》评其为2013年的10大科学突破之一。 2018年,国内钙钛矿太阳能电池研究成果丰富。本次,新材料在线® 总结了北京大学、上海交通大学、西安交通大学、华东理工大学、北京理工大学等10所高效的最新技术成果,以助您了解钙钛矿在太阳能光伏领域的研究进展。 1、陕西师范大学:稳定高效的全无机钙钛矿电池研究取得进展 11月12日消息,陕西师范大学材料科学与工程学院刘生忠教授团队在全无机CsPbI3钙钛矿电池领域取得重要进展,研究人员首先使用氢碘酸和碘化铅为原料制备出HPbI3+x中间体,进而制备出晶体结构扭曲的CsPbI3材料,其禁带宽度进一步降低至1.69 eV。随后通过苯乙胺碘添加剂加入到前驱体溶液中,制备出结晶质量优异,晶格扭曲的CsPbI3钙钛矿材料(β-CsPbI3, γ-CsPbI3)。 经过优化,最终得到的器件光电转换效率可达到15.07%,经过300h持续光照以及干燥空气中保存60天后,效率没有明显的降低,促进了CsPbI3钙钛矿太阳能电池进一步发展。相关工作已发布于《Nature Communications》。 2、南京工业大学:功率转换效率达18.2%的准二维钙钛矿太阳电池 10月29日消息,南京工业大学海外人才缓冲基地(先进材料研究院)黄维院士、王建浦教授团队在钙钛矿领域取得新研究进展。利用3溴苯甲胺制备了高结晶性、低缺陷的准二维钙钛矿薄膜。基于这种独特结构的钙钛矿薄膜,实现了功率转换效率达18.2%的准二维钙钛矿太阳电池。 未封装器件在40%相对湿度的大气环境下老化2400小时,效率仍保持初始值的82%。将未封装器件浸入水中60秒,其参数几乎没有变化,展现出优异的水稳定性。该研究表明,基于3溴苯甲胺的准二维钙钛矿材料有望实现高效稳定的钙钛矿光电器件,而精确调控钙钛矿薄膜生长是实现这一目标的关键因素之一。相关工作已发布于《Advanced Materials》。 3、上海科技大学:效率达到9.4%的非铅钙钛矿太阳能电池 10月9日消息,上海科技大学宁志军教授课题组利用假卤素调控剂NH4SCN调控锡钙钛矿结晶生长,成功制备了二维-准二维-三维(2D-Quasi 2D-3D)梯度结构的钙钛矿薄膜。此梯度结构能有效降低锡钙钛矿薄膜的氧化和缺陷浓度,基于此梯度结构的锡钙钛矿太阳能电池实现了9.41%的光电转化效率,是目前稳态输出效率最高的非铅钙钛矿太阳能电池。 该研究为低维梯度钙钛矿薄膜结构的调控提供了一种新的思路,对钙钛矿太阳能电池无铅化的进一步发展具有重要意义。相关工作已发布在Cell Press旗下的能源旗舰期刊《Joule》。 4、南京大学:稳态转换效率达20.7%和19.1%的宽带隙钙钛矿太阳能电池 8月11日,南京大学现代工程与应用科学学院的谭海仁教授与多伦多大学的Edward Sargent教授研究发现有偶极性的有机阳离子对有机-无机杂化钙钛矿材料的缺陷性能具有显著的影响,在钙钛矿材料中引入少量的偶极性阳离子,可以大大降低宽带隙钙钛矿太阳能电池中的非辐射复合损失,大幅提升光电转换效率。 基于1.65 eV和1.75eV的宽带隙钙钛矿太阳能电池的稳态转换效率分别高达20.7%和19.1%,均是目前报道的宽带隙钙钛矿电池中的最高效率值。该工作为进一步提升钙钛矿太阳能电池的效率提供了新方法,也为获得高效率钙钛矿基叠层光伏器件(比如钙钛矿-晶体硅叠层电池、钙钛矿-钙钛矿叠层电池)提供了良好的基础。相关工作已发布于《Nature Communications》。 5、华东理工大学:钙钛矿太阳能电池空穴传输材料研究取得进展 7月18日消息,华东理工大学化学与分子工程学院吴永真特聘教授和朱为宏教授通过引入弱吸电子的喹喔啉单元,构建给体-受体-给体(D-A-D)型HTM,合理调控HTM的HOMO能级,优化钙钛矿太阳能电池器件界面能带排布。与spiro-OMe TAD相比,这种D-A-D型的HTM分子具有更好的光稳定性,热分解温度提升了30oC,合成成本降低了30倍。以噻吩取代的HTM分子TQ2制备的钙钛矿太阳能电池器件取得了19.62%的光电转换效率,优于参比化合物spiro-OMe TAD(18.54%)以及苯环取代的HTM分子TQ1(14.27%)。 荧光寿命表征以及导电率测试表明噻吩取代的HTM分子有更好的空穴提取和传输能力。进一步通过单晶分析发现TQ2分子间存在S---S以及S---π相互作用,缩短了分子间三苯胺单元的距离,增加了空穴传输通道。该工作为设计低成本、高性能的钙钛矿太阳能电池空穴传输层提供了新思路,成果已在线发布于《Chemical Science》。 6、北京理工大学:高效率钙钛矿太阳能电池中有机小分子空穴传输材料研究取得进展 5月22日消息,北京理工大学前沿交叉科学研究院崔彬彬特别副研究员课题组与陈棋教授课题组合作,在高效率钙钛矿太阳能电池中有机小分子空穴传输材料的研究取得新进展,设计合成了分别以“邻二噻吩苯”和“萘并双噻吩”为核心π-bridge的两种低成本三芳胺类衍生物PBT和NDT,并将在这两种Donor-π-Donor构型的有机小分子作为空穴传输层材料应用于钙钛矿太阳能电池器件中,是有潜在应用价值的钙钛矿太阳能电池空穴传输材料。 在同样条件下,基于PBT的PSCs器件达到的最大光电转换效率为13.6%,而以相对于PBT具有更好平面共轭特征的NDT作为空穴传输层的PSCs器件最优光电转换效率可达到18.8%。相关工作已发布于《Journal of Materials Chemistry A》。 7、湖南大学:新型钙钛矿太阳能电池材料研究取得进展 4月25日消息,湖南大学材料科学与工程学院杨斌教授和合作者们运用美国橡树岭国家实验室的大科学装置“散裂中子源”高分辨单晶中子衍射,解析了杂化钙钛矿材料CH3NH3PbBr3在不同温度下的结构,观察到有机组分CH3NH3+随温度升高从有序到无序的转变过程,揭示了分子取向及排列变化可以诱导CH3NH3PbBr3钙钛矿的结构相变和反常光致发光效应。 该工作表明,有机组分的取向和翻转可以显著影响杂化钙钛矿材料的微观结构和宏观光电性质。这项研究成果将为今后设计和开发新型高性能钙钛矿型光伏材料,从而提高钙钛矿太阳能电池的能量转换效率和长期稳定性提供科学依据。相关工作已发布于《Advanced Materials》。 8、西安交通大学:锡基非铅钙钛矿太阳能电池光电转换效率达6.98% 3月30日消息,西安交通大学电信学院吴朝新教授团队采用蒸镀旋涂的方式,以及发展了一种对电池器件结构的双侧界面调控方法,同时实现了高质量二维-三维异质结锡基非铅钙钛矿薄膜和高效率、高稳定性的电池器件。器件的光电转换效率高达6.98%,位于国际锡基非铅钙钛矿太阳能电池最高效率之列。 该工作基于之前的工作基础取得锡基钙钛矿太阳能电池6.98%的光电转换效率,为环境友好非铅钙钛矿太阳能电池的应用做了重要贡献。相关工作已发布于《ACS Energy Letters》。 9、山东大学:制备出高效稳定的无机钙钛矿CsPbI3太阳能电池 3月30日消息,山东大学尹龙卫教授团队在钙钛矿太阳能电池领域取得重要进展,通过表面钝化工程的方法制备高效稳定的无机钙钛矿CsPbI3太阳能电池,解决了立方相无机钙钛矿材料常温下无法稳定存在的学术难题。相关工作已发布于《Nature Communications》。 该结果开创了制备室温稳定的立方相无机钙钛矿的新方法,为理解和研究无机钙钛矿相结构稳定性提供了理论指导,对于推动高效稳定的钙钛矿太阳能商业化应用与发展具有重要意义。 10、北京大学:在有机/无机杂化钙钛矿太阳能电池界面调控方面取得进展 1月17日消息,北京大学新材料学院孟鸿教授课题组在有机/无机杂化钙钛矿太阳能电池界面调控方面取得重要进展,通过简单的季胺化反应得到新型界面修饰材料Phen-I。进一步的器件性能研究表明5%Phen-I:PCBM作为电子传输层时性能最高,并证明Phen-I是具有双功能性的界面材料。 通过进一步对钙钛矿活性层的优化,孟鸿教授课题组取得了19.27%的光电转换效率。这种高效地双功能性界面材料也有望进一步推广应用于其他有机半导体器件中。相关研究成果已发布于《Nano Energy》。 以上以研究成果发布时间为倒序,排名不分先后。
  • 《新突破!我国科研团队解锁太阳能电池“长寿密码”》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-03-07
    • 钙钛矿太阳能电池因其高效、低成本、轻量化等特点,被视为未来光伏技术的重要方向。然而,这类电池存在一个关键问题——稳定性较差,难以长期使用。3月7日,华东理工大学的一项研究成功破解了这一难题,相关成果已发表在国际顶级期刊《科学》(Science)。据悉,科研团队成功找到延长钙钛矿太阳能电池寿命的关键方法,这项“命短”难题的破解,让人类距离用上更便宜、更轻薄的太阳能板又近了一大步。钙钛矿太阳能电池被称作“未来之光”,它不仅能像传统硅电池一样发电,还能做成薄如纸张、可弯曲的形态,甚至能贴在衣服或窗户上使用。但多年来,这种电池有个致命弱点:在阳光下用不了多久就会“衰老”,使用寿命远达不到实际应用要求。 研究团队揭开了这个“短命”谜团。研究发现,钙钛矿材料在阳光照射下会像气球一样反复膨胀收缩,时间一长就会“内伤”破裂。这种材料遇光会膨胀超过1%,内部晶体相互挤压产生破坏力,就像反复折叠的纸最终会断裂一样。 科研人员想出了一个妙招——给材料穿“防弹衣”。他们用世界上最坚硬的材料之一石墨烯,加上特殊透明塑料,制成只有头发丝万分之一的超薄保护层。实验证明,这层“防护服”能让材料抗压能力翻倍,把膨胀幅度从0.31%降到0.08%,就像给易碎品加了抗震包装。经过严格测试,装上这种保护层的太阳能电池创下新纪录:在模拟日常使用的强光高温环境下,持续工作3670小时(约153天)后,仍能保持97%的发电效率。这是目前同类电池中最长的稳定工作时间,意味着实际应用成为可能。 这项突破不仅给出解决方案,更颠覆了科学界认知。过去十年,全球科学家主要从材料配方改良入手,而华东理工团队首次发现“物理损伤”这个隐藏杀手,为后续研究打开新方向。相关专家表示,这项工作重新定义了提升稳定性的技术路径。 研究团队透露,该技术已开始与企业合作试验。一旦量产,将带来革命性变化:建筑外墙的发电玻璃、可折叠的户外充电毯甚至给手机充电的太阳膜都可能成为现实。据估算,钙钛矿电池生产成本仅为硅电池的1/3,发电效率还有提升空间。 随着稳定性瓶颈的突破,这项“实验室里的未来科技”正加速走向千家万户,为全球绿色能源转型提供“中国方案”。