《浙大研发新型催化剂可将制氢成本降低80%》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-05-14
  • 13日,记者从浙江大学获悉,该校化学工程与生物工程学院侯阳研究员,通过将高度分散的镍单原子锚定在氮—硫掺杂的多孔纳米碳基底,设计开发出了一种单原子OER催化剂,能使电/光电催化水裂解析氧反应更加高效,从而提升氢气制备的效率。这种新型催化剂可降低80%的制氢成本,并大幅提升OER反应的稳定性。该成果已被知名学术期刊《自然通讯》在线报道。

    通过水裂解产生氧气,进而形成氢气,是最常见的氢气制备方法,其产生的电/光电催化析氧反应(OER),会限制整体的能量转换效率。此前有科研人员研究出了金属铱作为催化剂来提升反应效率,但其价格十分昂贵。因此,研制出既保证催化效果又价格低廉的替代品,成了学界面临的难题。

    侯阳课题组通过仿生学方法,从材料的原子结构开始剖析。他们发现叶绿体中存在一种金属——氮配位卟啉结构,可收集太阳能,利用光合作用氧化反应分解水,并释放出氧气。侯阳介绍,他们还通过分析发现了镍—氮配位掺杂的碳材料。

    “在这一特殊结构中,四个氮原子‘拉着’金属镍原子,吸引氢氧根离子吸附,降低了各种中间环节的转换难度,进而加速氧气析出。”侯阳称,课题组创新性地用一个硫单原子替换了一个氮原子,进一步优化材料表面的电荷分布,同时采用特殊工艺,将镍—氮材料“锚定”在碳基底上,规避了材料的不稳定性,最终使这种新型催化剂电极在碱性条件下表现出优异的电催化水裂解析氧活性和稳定性。

    “OER析氧反应是水裂解器件和金属—空气电池的核心过程”。侯阳表示,这项成果或将助力新一代氢能汽车大规模降低燃料成本。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=483612
相关报告
  • 《新型催化剂可将制氢成本降低80%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-14
    • 13日,记者从浙江大学获悉,该校化学工程与生物工程学院侯阳研究员,通过将高度分散的镍单原子锚定在氮—硫掺杂的多孔纳米碳基底,设计开发出了一种单原子OER催化剂,能使电/光电催化水裂解析氧反应更加高效,从而提升氢气制备的效率。这种新型催化剂可降低80%的制氢成本,并大幅提升OER反应的稳定性。该成果已被知名学术期刊《自然通讯》在线报道。 通过水裂解产生氧气,进而形成氢气,是最常见的氢气制备方法,其产生的电/光电催化析氧反应(OER),会限制整体的能量转换效率。此前有科研人员研究出了金属铱作为催化剂来提升反应效率,但其价格十分昂贵。因此,研制出既保证催化效果又价格低廉的替代品,成了学界面临的难题。 侯阳课题组通过仿生学方法,从材料的原子结构开始剖析。他们发现叶绿体中存在一种金属——氮配位卟啉结构,可收集太阳能,利用光合作用氧化反应分解水,并释放出氧气。侯阳介绍,他们还通过分析发现了镍—氮配位掺杂的碳材料。 “在这一特殊结构中,四个氮原子‘拉着’金属镍原子,吸引氢氧根离子吸附,降低了各种中间环节的转换难度,进而加速氧气析出。”侯阳称,课题组创新性地用一个硫单原子替换了一个氮原子,进一步优化材料表面的电荷分布,同时采用特殊工艺,将镍—氮材料“锚定”在碳基底上,规避了材料的不稳定性,最终使这种新型催化剂电极在碱性条件下表现出优异的电催化水裂解析氧活性和稳定性。 “OER析氧反应是水裂解器件和金属—空气电池的核心过程”。侯阳表示,这项成果或将助力新一代氢能汽车大规模降低燃料成本。
  • 《美国高校开发三层双功能制氢催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-31
    • 由莱斯大学和休斯敦大学开发的一种新型高效、高度活跃的双功能催化剂可将水分解成氢和氧,而不需要像铂这样昂贵的金属。该研究小组认为,这项工作提供了一种简单的策略,即从地球丰富的材料中制造出高效的电催化剂,用于整体水分离。   由莱斯大学生产、休斯敦大学测试的电解膜是一种三层结构的镍、石墨烯和三元金属磷化物(FeMnP、铁、锰和磷)。泡沫镍使薄膜有一个较大的表面,使导电石墨烯保护镍不受降解,金属磷化物也能进行反应。   石墨烯,一种原子厚度的碳,是保护底层镍的关键。在化学气相沉积(CVD)炉中的镍泡沫上形成1至3层石墨烯,并且还通过CVD和单一前体将铁、锰和磷加在其上。   通过对镍泡沫和无石墨烯的磷化物进行了测试比较了中间的镍泡沫和无石墨烯的磷化物,结果发现导电石墨烯降低了氢和氧反应的电荷转移电阻。   Whitmire表示,该材料具有可扩展性,可应用于生产氢和氧的汽车工业中,也可用于电催化储存能量的太阳能和风力发电设施。   在氢进化反应(HER)和氧进化反应(OER)中,FeMnP表现出高的电催化活性。利用FeMnP / GNF作为阳极和阴极进行整体水分离,团队在低至1.55 V的电池电压下实现了10 mA cm-2的电流密度。通过密度泛函理论(DFT)的计算表明,暴露Fe和Mn位点的切面是实现HER高活性的必需条件。   Kenton Whitmire表示:“常规金属有时会在催化过程中氧化。通常,氢的进化反应是酸的,氧的进化反应是在碱中完成的。我们这次所研发的是一个稳定的材料,不管是在酸性还是碱性溶液中。”   这一发现建立在研究人员今年早些时候发明的一种简单的氧进化催化剂之上。在这项工作中,研究小组直接在一个半导体纳米线阵列上产生了催化剂,将太阳光转化为太阳能水分解的能量。