《利用 CRISPR-Cas9 技术让小鼠重见光明》

  • 来源专题:转基因生物新品种培育
  • 编译者: Zhao
  • 发布时间:2017-02-28
  • 老年黄斑变性 (AMD) 会影响视网膜病变,导致视力模糊扭曲,还会导致视野中央出现黑点。据估计,65 岁以上有十分之一的老年人患有这种症状,并且随着老龄化的加剧这种疾病将会越来越多。AMD 在白种人中很常见,它会导致视觉扭曲和盲点。韩国基础科学研究所 (IBS) 基因组工程中心的科学家报告,他们使用 CRISPR-Cas9 技术在活体小鼠的某个支持视网膜的组织层进行“基因手术”。该研究发表在《Genome Research》上(点击左下角阅读原文),将基础研究和小鼠模型应用结合在一起。

    导致失明的最常见视网膜病变包括:早产儿视网膜病变、糖尿病视网膜病变和老年性黄斑变性。在这些疾病中,血管内皮生长因子 (VEGF) 的分泌达到了不正常的高水平。对于 AMD,VEGF 会导致眼睛中形成新血管,但也会导致血液和体液进入眼睛,破坏视网膜的中央区域,即黄斑受损。

    注射抗 VEGF 药物是治疗 AMD 的最常见方法,但每年至少注射 7 次,因为病变的视网膜色素上皮细胞会持续分泌 VEGF。IBS 的科学家认为,CRISPR-Cas9 技术可以改善这种状况。基因组工程中心的负责人 KIM Jin-Soo 解释说:“注射只能是治标不治本。通过编辑 VEGF 基因,我们能够长期地治愈这种疾病。”

    CRISPR-Cas9 能够在基因中的特定位置进行精准地剪切和修复。CRISPR-Cas9 系统的工作方式是在目标位置剪切 DNA,在这种情况下,就是对 VEGF 基因进行剪切。两年前,IBS 的科学家证明,一种预组装的 CRISPR-Cas9,或者说是 Cas9 核糖核蛋白(RNP),能够被导入到细胞和干细胞中对目标基因进行修改。这种预组装分子能够快速起效,而且可以在自身建立免疫反应之前就降解掉。尽管这种方法具有优势并且已经成功过,但是将预组装分子导入仍存在困难,这也就限制了它在治疗中的应用。

    在研究中,研究团队成功地将 CRISPR-Cas9 注射到患湿性老年黄斑变性的小鼠眼中,并修改了 VEGF 基因。他们最初发现,注射法比用质粒导入更加有效。其次,这种化合物在 72 小时内就会降解消失。科学家检测了小鼠的基因组,发现 CRISPR-Cas9 分子只修改了 VEGF 基因,对其他基因没有影响。他们通过观察脉络膜新生血管 (CNV) 的方式监控眼部疾病进程,CNV 是视网膜和巩膜之间新形成的血管,它是湿性黄斑变性的常见问题,研究人员发现,CNV 区域减少了 58%。此外,锥体机能不良的副作用只持续了 3 天,在治疗后一个星期后没有再出现。

    Kim Jin-Soo 说:“我们的方法通过关闭 VEGF 基因来抑制 CNV。我们预计在未来,外科医生可以利用这种方法对患者进行治疗。”

    CRISPR-Cas9 过去常被用于修复导致遗传疾病和癌症的基因突变,这项研究提出了一种治疗非遗传退行性疾病的新方法。首尔国立大学的 KIM Jeong Hun 教授指出:“我们已经确认这种方法在动物模型中有效果,现在我们希望能够进行临床前试验。”

相关报告
  • 《CRISPR-CAS9介导的木薯基因组编辑》

    • 来源专题:转基因生物新品种培育
    • 编译者:Zhao
    • 发布时间:2017-11-27
    • 目前研究证明,CRISPR-Cas9是一种能够用于进行基因修饰,将新的遗传信息引入作物物种的强大的基因组编辑工具。但是,它还没有被用来编辑木薯(Manihot esculenta)这一作物。为了验证CRISPR-Cas9基因编辑技术在修饰木薯基因组中的效果,Donald Danforth植物科学中心研究员John Odipio及其团队利用携带针对MePDS的gRNA的构建体在两个栽培品种中靶向定位八氢番茄红素脱氢酶(MePDS)基因。并且MePDS基因的修饰在相对较短的时间范围内产生视觉可检测的突变事件,并且不需要通过基因测序来确认。 在农杆菌介导的CRISPR-Cas9试剂进入到木薯细胞中后,两种构建体都在子叶期体细胞胚中诱导可见的白化表型,并从该位点再生植物。本次诱变分析研究共测定了38个品系,每个品种19个。显示白化表型的植物品系的频率在两个栽培品种中为90-100%。而且通过基因序列分析显示,所有被检测的株系在目标MePDS位点都携带突变点,而且记录下了这些突变点的插入,缺失和置换。另外,研究小组观察到在MePDS区域上游5'末端或下游3末端有少量核苷酸取代和/或缺失。 本研究报道的数据表明,CRISPR-Cas9介导的基因组编辑技术也同样适用于木薯,而且效率较高。 有关这项研究的更多信息,请阅读“植物科学前沿”杂志中的文章。
  • 《研究重点: CRISPR技术》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-30
    • 精确编辑活细胞基因组的能力具有巨大的潜力,可以加快生命科学研究,改善生物技术甚至治疗人类疾病。 用于基因组编辑的方法-主要是锌指核酸酶和类似转录激活因子的效应器(TALE)核酸酶-已经存在了几年,但是在2013年,被首次设计的CRISPR-Cas9系统的效率,有效性和精度迅速使它们黯然失色。博德研究所(Broad Institute)和麻省理工学院(MIT)的张峰(Feng Zhang)利用其进行哺乳动物基因组编辑。 CRISPR系统 像锌指和TALE一样,CRISPR系统也是天然产物。然而,CRISPR-Cas在一个关键方面与锌指和TALE不同,这使其在基因组编辑应用中具有优势:而锌指和TALE通过直接的蛋白质-DNA相互作用与DNA结合,需要针对每个新靶点重新设计蛋白质DNA位点,CRISPR-Cas通过小的RNA可以实现靶标特异性,可以很容易地将其交换为靶向新位点的其他RNA。 在自然界中,CRISPR-Cas系统可帮助细菌防御攻击性病毒(称为噬菌体或噬菌体)。它们由两个组件组成,CRISPR(聚簇的,规则间隔的回文重复序列)阵列和Cas(与CRISPR相关的)蛋白。 CRISPR序列可阻止细菌从入侵的噬菌体复制而来的短片段DNA,从而保留了过去攻击它们的病毒的记忆。然后将这些序列转录为短RNA,将Cas蛋白引导至匹配的病毒序列。 Cas蛋白通过切割来破坏匹配的病毒DNA。自然界中存在许多不同类型的CRISPR-Cas系统,它们的组成各不相同。 CRISPR-Cas9系统仅使用一种蛋白质Cas9来发现并破坏目标DNA。在2015年,Zhang和同事成功地利用了另一个名为CRISPR-Cpf1的系统,它具有用于更简单,更精确的基因组工程的潜力。 工程CRISPR工具箱 2011年初,张峰刚刚在Broad大学和MIT成立了自己的研究小组,在那里他是McGovern脑科学研究所的研究员,并且是脑与认知科学和生物工程系的教职员工。在广泛会议的一次科学会议上了解了现有的CRISPR研究之后,他很快意识到具有单个RNA引导蛋白的系统可能会改变基因组编辑技术。他已经在研究DNA靶向方法,并曾作为哈佛的初级研究员帮助开发TALE系统。该系统可以靶向并激活哺乳动物基因组中的基因。 Zhang和他的团队专注于利用CRISPR-Cas9在人类细胞中使用。 2013年1月,他报告了在人类细胞中基于Cas9的基因组编辑的首次成功演示,该论文已成为被引用最多的CRISPR论文(Cong等,Science,2013)。哈佛大学乔治·丘奇实验室的研究人员在同一期《科学》上也报道了类似的发现(Mali等,《科学》,2013年)。 Zhang和Church的论文表明,Cas9可以靶向人类基因组中的特定位置,并在那里切割DNA。然后通过插入由研究人员提供的新的DNA片段修复被切割的DNA,从而基本上实现了人类基因组的“查找和替换”功能。 2015年9月,Zhang和合作伙伴介绍了另一种系统Cpf1,该系统似乎对研究和治疗具有重要意义。 Cpf1系统更简单,因为它仅需要一个RNA。 Cpf1酶也比标准SpCas9小,从而更易于传递到细胞和组织中。