《半导体晶体中发现新型准粒子》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-07-30
  • 英国《自然》旗下《通讯·物理》杂志日前发表了一项物理学新成果:德国科学家描述了一种在高质量半导体晶体中发现的新型准粒子——“Collexon”,其可以印证准粒子存在的材料所表现出的独特光学特征,以及不同寻常的物理特性,而这些特点对基础科学和应用科学都非常重要。

    在由许多不同粒子组成的微观系统(如固体材料)中,每个粒子的运动都是复杂的,是该粒子与周围粒子之间的各种强烈相互作用的产物。为了能够更简单地了解这些系统的行为和特性,物理学家们重新构想了固体,想象它们包含的是在自由空间中弱相互作用的粒子。这些“准粒子”具有不同的类型,可以带来有关材料特性的不同认知。

    此次,德国柏林工业大学科学家克里斯丁·南斯泰尔及其同事,将氮化镓半导体晶体中的原子替换为锗原子,他们在维持原始晶体结构的同时,实现了高浓度的原子取代。然而,这样的原子取代改变了晶体的物理特性——增加了固体中自由电子的浓度。

    通过分析这些经过特殊处理的晶体对光的吸收和发射,研究团队观察到一种现象,被他们称为新型准粒子的“Collexon”的稳定性,会随着电子气密度的上升而上升。他们认为这可能是所有半导体的标准特性——只要能够实现相同水平的原子取代即可。

    如果这些发现可以进一步得到理论研究的支持,那么准粒子“Collexon”可以被认为是半导体材料具有的共同特征。半导体是现代技术的基础,提高我们对其电子结构的理解,既有益于理论研究,也有益于应用研究。

    随着信息技术的快速发展,摩尔定律遇到了“天花板”。这个定律预测,当价格不变时,集成电路上可容纳的元器件数目每隔18到24个月就会翻一番。如今,这一速度正在放缓,集成电路上的元器件数目也在挑战半导体的极限。所以,寻找除了硅以外的新半导体材料,以及发现半导体材料的新特性,就成了信息技术实现下一步飞跃的关键。这正是上述发现的意义所在。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2018-07/30/content_400421.htm?div=-1
相关报告
  • 《日本研究人员发现新技术 可让金属铂“化身”半导体》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-08-09
    •  新华社东京8月9日电(记者华义)日本研究人员最新研究发现,金属铂制成只有2纳米厚的超薄膜时,可以拥有类似硅等半导体的特性。研究人员认为,这一发现挑战了对于半导体材料的传统认知,有助于推动相关领域发展。   传统意义上,金属和半导体被严格区分,金属一般导电性能好,而半导体介于绝缘体和导体之间,导电性可受控制。用硅等常见半导体材料制造的晶体管广泛应用于各种电子设备中。   京都大学研究小组发现,在一种名为“钇铁石榴石”的磁性绝缘体上将重金属铂制成只有2纳米厚的超薄膜时,它可以像半导体一样,通过外部电压控制电阻。   此外,研究人员还发现铂能够大幅调节和控制“自旋轨道耦合”这一效应。自旋轨道耦合是指粒子自旋和轨道运动之间的相互作用,在自旋电子学等研究中扮演关键角色。半导体或其他新材料的研究常常会涉及这一效应。   研究小组称,这一发现与传统的固体物理学常识不符,将有助于电子学和自旋电子学领域的发展。这一研究成果已发表在新一期英国《自然·通讯》杂志上。
  • 《“时间晶体”相互作用首次发现 有望促进量子信息处理技术发展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-19
    • 一个国际科研团队在最新一期《自然·材料》杂志撰文称,他们首次观察到了“时间晶体”的相互作用。最新研究有望促进量子信息处理技术的发展,改善当前的原子钟技术,提高陀螺仪以及依赖原子钟的系统(如GPS)的性能。 时间晶体是一种物质态,不同于金属或岩石等标准晶体,后者由原子以规则的重复模式排列而成。2012年,诺贝尔奖获得者弗兰克·威尔泽克首次提出了时间晶体这一概念,并于2016年确定。时间晶体显示出恒定不变的奇异特性,即使没有外部输入也能重复运动。它们的原子先在一个方向不停地振荡、旋转或移动,然后再朝一个方向运动。 在最新研究中,来自英国兰卡斯特大学、伦敦皇家霍洛威大学伦敦分校、美国耶鲁大学和芬兰阿尔托大学的国际团队使用氦-3观测了时间晶体。氦-3是氦罕见的同位素,缺少一个中子。 研究人员将超流体氦-3冷却到绝对零度(零下273.15摄氏度)附近,然后在超流体内部创建了两个时间晶体,并使其接触。 科学家观察到两个时间晶体相互作用,并交换组成颗粒——这些粒子从一个时间晶体流向另一种时间晶体,然后又返回,这种现象称为约瑟夫森效应。 研究论文主要作者、英国兰卡斯特大学的萨穆利·奥蒂博士说:“控制两个时间晶体的相互作用是一项重大成就。此前,没有人在同一系统中观察到两个时间晶体,更不用说看到它们相互作用了。实现并观察到时间晶体的受控相互作用是将其用于量子信息处理等实际应用的第一步。” 奥蒂解释道,因为尽管周围环境变化,时间晶体仍会自动保持完整(相干),让相干性延续时间尽可能长是发展强大的量子计算机必须要解决的主要“拦路虎”。此外,时间晶体也可用于改善原子钟、GPS等系统的性能。 总编辑圈点 在晶体内,原子分子按照周期性结构重复排列。时间晶体,顾名思义,它在时间维度上仍然存在周期性重复的特征。这种物质,在时间轴上自发保持周期性运动,不消耗外部能量。晶体恒久远,一颗永流传。时间晶体周期运动的特性稳定,也被认为是制作量子计算机的潜力材料。此文研究作者指出,时间晶体的受控交互,是将时间晶体用于实际应用的第一步。现在,科研人员观察到了两个时间晶体之间的交互,也算是将利用时间晶体这件事,往前推进了一点点。