《德国科学家开发的纤维增强复合材料有望代替金属,实现汽车轻量化》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-14
  • 汽车应该通过轻量化实现环保的目的。一个重要的方法是用与金属具有相同稳定性的纤维 - 塑料复合材料代替金属部件。来自德国Halle (Saale)的Fraunhofer Institute材料与系统微结构研究所的一个团队与合作伙伴共同开发了纤维增强塑料复合材料。这些复合材料不仅具有非常好的轻质性能,而且是在可再生原料基础上生产的。

    纤维塑料复合材料是一种理想的轻质结构材料,它既具有高强度、高刚性、低密度,又具有良好的阻尼性能,耐腐蚀性。

    在与德国北莱茵威斯特法伦州Wesel的BYK Chemie GmbH和德国德累斯顿的GK Concept GmbH的联合研究项目中,Fraunhofer IMWS开发了生物基连续纤维增强的半成品。这些半成品也被称为UD带,由平行叠加的连续纤维和基于聚乳酸的热塑性基质组成。通过将纤维加入聚乳酸从而形成环形纤维增强膜。对多个薄膜层进行叠加和热压可生成高性能板材。当进一步处理这些时,组件中的纤维取向可以在以后的应用中直接适应负载。

    Fraunhofer IMWS热塑性塑料的纤维复合半成品组的负责人Ivonne Jahn表示我们将高质量的生物基纤维与作为主料的热塑性基质相连,从而获得具有非常好的机械性能的材料,例如弯曲和拉伸性能。我们的开发工作对于可持续轻质结构的应用是非常好的促进。与GKC GmbH合作,他们在Schkopau的Fraunhofer Pilot Plant Center聚合物合成和加工PAZ的同事们使用混合注塑和压制方法生产各种样品先导组件,例如扶手指示器。

    此类技术和材料的发展为这些生物聚合物基复合材料未来在汽车制造业的使用奠定了基础。Ivonne Jahn预见了多种可能应用生物UD磁带领域:复合层压板性能变得越来越好。例如在以后的工业规模下,就可以为汽车内饰制造出更经济的专用部件。工厂中心现有的创新和先进工艺,加上新的材料组合,增加了未来轻量化建筑的潜力。因此生物基复合材料对于新一代材料应用是不可或缺的。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=277444
相关报告
  • 《碳纤维复合材料轻量化横拉杆的应用开发》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-16
    • 德国弗劳恩霍夫系统可靠性与结构耐久性研究所的研究人员针对中级车开发出一款轻量化横拉杆。该构件采用碳纤维材料,与钢质的同类构件相比重量降低了35%。此外,研究人员还计划在横拉杆中集成多种功能, 使之能实现更高的故障允许误差和使用舒适度。为此研究人员在构件中采用了结构健康监控系统(SHM)和用于减少固体声传播的半主动系统。 对于设计人员来说,如何保证纤维复合结构的设计符合纤维特性并且确保构件在使用时安全可靠是一个巨大的挑战。 与金属相比,纤维复合材料在载荷情况下的行为更复杂,所以不能简单地用纤维复合结构替代金属结构。考虑到加工工艺以及纤维复合材料各向异性的原因,在设计时针对不同的材料需要采取不同的途径。设计纤维复合材料时必须符合纤维的特性,所以这些强化纤维必须在载荷方向排列整齐。 横拉杆在负载情况“左转刹车”时所受的张力 达姆斯达特的研究者们面对的一个挑战是如何使纤维复合材料构件的制造适合批量化生产。研究结果表明,采用热塑性材料矩阵的有机板坯特别适合大型与面型构件制造。材料在模具中按照构件的形状注塑成型。基于材料的热固性塑料矩阵体系,可以考虑采用树脂传递模塑方法加工构件。 LBF的研究人员强调,要设计出稳定可靠的汽车底盘零件,需要考虑到所有与零件运行有关的影响因素。构件的载荷设计以在一个行驶周期中测量轮获取的载荷集为基础。这些数值组被换算成各个构件所受的外力。临界驾驶行为由驾驶行为导出,这些临界值则作为假设载荷。按照研究人员的进一步解释,不同的驾驶行为在载荷最高的区域引起了错综复杂的多轴向负荷状态,考虑到行驶安全,需要对这些状态进行评估。 优化的敷层结构 研究人员对所采用的材料进行了试验研究,根据研究成果构建了材料模型基础,并据此对寿命进行评估。借助于数字仿真方法,研究人员对各种载荷区域加以识别,结构中的纤维增强材料需要根据载荷方向变化。研究表明,为了支持局域纤维增强,编织层需要采用敷层结构。为了使编织层最佳适应应力载荷,对敷层构造根据局域纤维方向加以数字优化。 光线揭示损伤 高负载情形会使构件结构受损并缩短构件的寿命,例如发生交通事故或者在路况很差的路面超载等。借助于由纤维光学传感器和光电缆组成的结构健康监控系统,研究人员可以在线监控这些受损区域。当构件被监控区域产生了一条裂缝并且损伤加重时,该区域的变形则加剧,而纤维光学传感器会捕获这些变化。在超出所设定的最低值时,司机会得到相应的警报显示。 在纤维复合材料中的阻尼振动 承受动态载荷的轻量化结构易产生振动,通常情况下会采用减振器之类的装置减少振动。采用此种方法的缺点是需要额外的重量和空间。为此,弗劳恩霍夫LBF研究所的研究人员通过采用被动元件布线的压电转换器集成了减振器。其原理是采用感应线路和转换器一起作为谐振线路,从而取代了机械减振器。为了实现高效,LBF研究者们在纤维复合材料构件的研发过程中采用了这个半主动系统,这样就可以加工出同时具有重量低、阻尼性能良好的构件。
  • 《揭密欧洲最新碳纤维复合材料汽车部件开发项目MAI Skelett》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-25
    • 德国碳纤维复合材料联盟(Carbon Composites e.V.,CCeV)是一家由企业和研究所组成的联合机构,其成员遍布高性能纤维增强复合材料的整条产业链。该联盟下设多个分支机构,MAI Carbon是其中之一。2012年1月19日经独立评审团评审,MAI Carbon通过了德国联邦教育及研究部(BMBF)前沿技术产业集群的第三轮选拔,成为五大前沿技术产业集群之一,位于慕尼黑、奥格斯堡和英戈尔施塔特三角区,计划到2020年形成碳纤维复合材料的规模化产业集群。为了实现这一目标,MAI Carbon成员企业开展的联合研发项目围绕复合材料部件全生命周期,内容涉及树脂纤维原材料、零部件制造及材料回收等全产业链各环节。 MAI Carbon机构由奥迪、宝马、Premium Aerotec、空客直升机、Voith、SGL,以及IHK Swabia、德国碳纤维复合材料研究所(LCC)、慕尼黑工业大学等创立,目前拥有超过120家会员单位。2012年以来,该机构成员间的联合研发项目多达39项,资助金额从几十万欧元到几百万欧元不等。 今天,小编带您了解一下MAI Carbon一项名为“MAI Skelett”的示范项目。该项目是复合材料制造商在寻求降低部件成本道路上的一次全新尝试。研究者通过不断努力,混合使用多种材料,将“合适的材料用于合适的部位”,同时最大程度地满足了规模生产对自动化和功能一体化的需求。 项目简介 MAI Skelett项目获得了德国联邦教育及研究部(BMBF)190万欧元的资助,为期17个月,由宝马公司主持实施,合作企业包括P+Z Engineering公司、SGL Automotive Carbon Fibers公司、CirComp公司和Eckerle公司。该项目针对挡风玻璃上方、两个A柱之间的挡风玻璃横向框架结构开展研发工作,并形成产品和工艺示范。其设计以现有的宝马i3车型为基础,遵从该车型设计的所有功能和结构要求。目标部件不仅是车顶横向框架结构件,提供了良好的刚度(能够有效降低NVH:噪音、振动和粗糙度)、强度(帮助车顶件在压缩实验中满足撞击要求),同时可用于遮阳板、装饰件、照明线等内饰件的固定,以及为挡风玻璃、天窗和车顶外面板提供连接支持。 该项目首次提出“骨架”设计理念,采用单向碳纤维增强复合材料及拉挤成型工艺,经热成型-复合模塑(overmolding)两步法,在75秒内生产出结构件,超越了前期各版本部件的工艺要求,实现了热塑性复合材料在白车身结构中的规模化应用。另外,该项目提高了白车身部件的残余应力,将其断裂方式从脆性断裂变为韧性断裂,从而改善了部件的碰撞行为。采用“骨架”设计的挡风玻璃框架弯折处有4根单向碳纤维增强复合材料拉挤棒,经复合模压工艺封装于部件内。4根拉挤棒中 ,两根靠近零件底部,两根靠近顶部,不在同一平面内,便于为部件提供扭转刚度和复杂形状的功能附件。 材料选择 项目采用价格相对较低的大丝束碳纤维为增强材料。由于50k大丝束碳纤维单丝排列紧密,树脂浸润非常困难。因此,需要结合纤维展宽技术对纤维导向进行优化,才能达到理想的预浸效果,同时保证了50%左右的高纤维体积含量。SGL掌握了这一技术,并将拉挤型材列入了其“热塑性产品备选箱”。 除了增强纤维,项目同样考察了不同种类的PA6树脂,以确保其粘度和流变特性能够对拉挤速率和产品质量进行优化。SGL的“热塑性产品备选箱”为项目提供了多种备选材料,包括碳纤维单向带、有机板、不同长度的短切纤维,以及单向碳纤维增强拉挤件。以上材料均采用SIGRAFIL 50k 碳纤维,以及适用于聚丙烯、聚酰胺等热塑性树脂基体的上浆剂。而聚酰胺类热塑性树脂的种类很多,包括PA6、PA66、PA12以及PPA中的部分类型都可以作为候选材料。有些PA6甚至可以在模压过程中通过反应原位获得。 热成型和复合模塑工艺 MAI Skelett项目最初选用的材料体系为碳纤维增强PA6复合材料。随后,研究人员对材料组分进行了调整,使材料能够适应部件形状及不同部位承载载荷的需要。选择热成型工艺主要考虑了碳纤维需在尽量直的情况下才能表现出高强度和高刚度,因此,拉挤棒材在树脂基体流动方向上被拉伸,其端头则进行弯折和展宽处理。 第二步,需将热成型后的拉挤棒材置于红外加热器之下,并在50秒内将其加热至指定温度,随后用机械臂将其转移至注塑模具中。短切纤维树脂糊经复合模塑工艺注塑于型材之上或其周围。复合模塑环节对模具和工艺过程的精度要求极高,这样方能确保热压后的拉挤棒材位置保持不变。 拉挤棒材热成型和复合模塑两步工艺的总周期约为75秒。由于热塑性树脂基体能够在复合模塑工艺之前重熔,因此,热压处理后的拉挤棒材能够在极短时间内完成部件的最终塑形 ,并与二次注塑材料连接为一体。热塑性树脂的这一特点甚至可使其与金属部件形成连接。同时,热塑性树脂基复合材料的热成型和注塑工艺同样能够获得产品质量的一致性和工艺过程的可控性,这对于规模化生产至关重要。 韧性断裂 能与玻璃纤维和碳纤维树脂糊相容的PPA和PA6树脂基拉挤型材部件韧性更佳,断裂模式也为韧性断裂。尽管韧性断裂模式的获得损失了挡风玻璃框架所能传递的部分载荷,但这却显著提高了白车身的结构完整性和综合使用性能。 尽管在项目结题报告中,宝马公司并未具体指出其倾向的材料组合,但报告总结称,最终的模拟和测试结果表明,“骨架”结构超越了单纯的碳纤维增强复合材料部件除扭转刚度以外所有的性能指标,而扭转刚度对于挡风玻璃框架来说并非关键数据。与普通的碳纤维复合材料部件相比,“骨架”结构部件碰撞过程的载荷水平和能量吸收水平都更为优异。同时,该部件具有韧性断裂模式,不但进一步提高了复合材料结构的碰撞断裂性能,还明确了其断裂行为与白车身整体结构间的关系。 “骨架”设计的未来应用 在结题报告中,宝马公司称将“骨架”设计理念应用于另外6个汽车部件时,同样能够显著降低生产成本、原材料成本和工装成本。SGL公司也建议将该技术应用于汽车及航空座椅、仪表盘、机器手臂、X光工作台等领域。 对“骨架”设计理念的研究并未止步,在随后开展的研发项目MAI Multiskelett中,该设计方法被扩展到了多轴向应力部件,重点研究了轴承部件和拉挤型材的连接部分,特别是有多条载荷路径交叉的大型结构件。此处暂不赘述。 “骨架”理念设计的挡风玻璃横向框架结构件,采用拉挤工艺和复合模塑工艺,有效缩短了工艺周期、减少了材料浪费,诠释了碳纤维在单向载荷结构件上的有效利用方式,是下一代碳纤维增强复合材料设计和规模化生产的典型示范。同时,将其他部件产生的碳纤维边角料用于制作复合模塑工艺所需的树脂糊,能够有效提高部件的功能性和使用性能,是提高复合材料可持续性的有效方法。