未来,全球对电子设备和电动汽车的需求将继续增长和多样化。这种需求的增长要求具有更高效率、性能和安全存储技术的强大电池。锂离子电池(lib)在二次离子电池领域已经统治了30多年。然而,由于对不可持续的开采实践、高成本和不均匀的地理分布的担忧,锂的供应正在逐渐减少。这促使研究人员和业界寻找lib的替代品。钠离子电池(SIBs)是一个很有前途的竞争者,因为钠在自然界中含量丰富,具有成本效益,并且具有很高的电化学电位。但是,在将它们实现到商业应用程序之前,需要解决某些问题。首先,钠离子半径比锂离子半径大,导致离子动力学缓慢,相稳定性和相间形成复杂。其次,需要开发兼容的电极,并确保不仅与lib而且与sib具有高性能。此外,碳基材料为lib和sib提供了很有前途的电极,但它们并非没有自己的一套缺陷。
为了帮助提高电极的性能和稳定性,来自日本先进科学技术研究所(JAIST)的Noriyoshi Matsumi教授和他在JAIST的博士生Amarshi Patra将他们的重点转移到用于制造sib电极的聚合物粘合剂上。
他们在 2024 年 9 月 发表在 Advanced Energy Materials 上的研究报告中开发了一种新型致密官能化水溶性聚(离子液体)--聚(氧羰基亚甲基 1-烯丙基-3-甲基咪唑)(PMAI),并测试了其与 LIB 和 SIB 的结合能力。 基于 PMAI 的阳极半电池表现出了优异的电化学性能和循环稳定性。Matsumi教授解释说:“世界范围内对能够快速充放电和解决钠离子扩散缓慢动力学问题的材料的需求不断增加。这种具有密集离子液体官能团的聚合物基粘合剂作为sib中高性能电极系统的组成部分。”
为了测试新型 PMAI 材料的有效性,研究人员将其分别用作 LIB 和 SIB 中的石墨阳极粘合剂和硬碳阳极粘合剂。
电化学评估结果表明,基于 PMAI 的阳极半电池表现出卓越的电化学性能、高容量(LIB 在 1C 时为 297 mAhg-1,SIB 在 60 mAg-1 时为 250 mAhg-1)和高循环稳定性,SIB 在 200 次循环后容量保持率为 96%,LIB 在 750 次循环后容量保持率为 80%。
此外,实验结果表明,离子扩散系数得到改善,电阻和活化能降低,这归功于离子液体基团的浓密极性以及通过粘合剂还原形成的功能化固体电解质间相。
以 PMAI 作为阳极粘合剂的全电池测试结果表明,性能和稳定性的提高证明了这种新型材料作为二次离子电池粘合剂的应用潜力。
“这一类材料将在商业应用的快速充电储能系统中得到采用,因为这种粘合剂能促进钠离子扩散。这项研究将促进更先进材料的开发,为新型钠离子供电电子设备和电动汽车铺平道路,"Matsumi 教授总结道。
“所开发的新型聚(离子液体)是一类新型材料。人们对聚(离子液体)的各种应用进行了深入研究,如储能设备、生化应用、传感应用、催化应用等。我们的新型致密离子液体功能化聚合物在上述各种研究领域具有潜在的实用性"。
原文链接: Amarshi Patra et al, Densely Imidazolium Functionalized Water Soluble Poly(Ionic Liquid) Binder for Enhanced Performance of Carbon Anode in Lithium/Sodium‐Ion Batteries, Advanced Energy Materials (2024). DOI: 10.1002/aenm.202403071