今天的传感技术,从原子钟到引力波探测器,在很大程度上依赖于精度,但从根本上受到标准量子极限(SQL)的限制。长期以来,这种对测量精度的限制一直是需要超精确检测的科学领域的障碍。在近日发表在《Physical Review A》上的一项研究中(https://doi.org/10.1103/PhysRevA.110.L041301),来自美国国家标准与技术研究院(NIST)和科罗拉多大学博尔德分校的联合机构美国天体物理联合实验室(JILA)、NIST和科罗拉多大学量子物质理论中心的研究人员展示了一种使用纠缠物质波绕过这一障碍的新方法。通过仅操纵超冷原子的运动状态,而不是电子相互作用,该团队创建了一个高度可调的系统,可以产生纠缠,适用于更敏感的量子增强传感器。
通过动量态重新定义纠缠
纠缠是一种量子现象,其中粒子相互连接,这意味着即使相隔很远,一个粒子的状态也会瞬间影响另一个粒子。在量子传感中,纠缠对于超越测量精度的经典极限(称为标准量子极限(SQL))是必要的。这个限制限制了许多量子实验中可实现的精度。通过纠缠,科学家们希望减少测量中的不确定性,这可能会导致更精确的原子钟、引力波探测器和其他量子技术。
正如该研究所指出的那样,之前的研究通常依赖于纠缠原子的内部状态,例如它们的自旋或电子构型。然而,研究中详细介绍的这种新方法表明,原子动量态之间可以产生纠缠,为量子增强传感创造了一个完全不同的范式。
使用超冷原子腔系统,研究人员依靠腔内的原子运动如何导致腔光子的频率偏移。然后,这种转变以偶极力的形式反射回原子上,使它们相互作用。动量态之间的这些相互作用产生了一种可用于量子测量的纠缠形式,所有这些都不涉及电子相互作用。
调整原子运动以实现精确控制
在他们的实验装置中,原子被限制在光学腔中,该光学腔由相干驱动器泵浦,以特定速率注入光子。当原子在腔内移动时,它们与光子的相互作用会导致频率偏移,进而驱动腔的响应。这种动态在原子的动量态之间产生纠缠,使团队能够精确控制原子的集体运动。该系统具有高度可调性,这意味着研究人员可以调整各种参数来优化纠缠生成过程。
根据该团队的说法,这项实验的关键成就之一是演示了单轴扭转(OAT)动力学,这是一种压缩形式,可以降低一个测量方向的不确定性,同时增加另一个方向的不确定度。这种设置中的OAT动力学是由原子动量态之间的相互作用引起的,产生了一种集体运动,导致了计量上有用的纠缠。这意味着即使在存在噪声的情况下,该系统也可以实现SQL之外的精确测量。
SQL之外的传感技术转型
量子增强传感在广泛的领域具有潜在的应用,从基础物理实验到GPS和医学诊断等实用技术。研究指出,通过超越SQL,这项研究可能会带来更灵敏的探测器,能够以前所未有的精度测量引力场、磁场或其他物理性质的微小变化。
例如,在引力波探测中,必须测量时空中令人难以置信的微小变化,使用纠缠物质波可以实现更精确、更快的探测。同样,在依赖于基于原子振动的精确时间测量的原子钟中,降低测量不确定性可以显著提高其精度,从而带来更好的全球定位系统和电信技术。
一如既往,噪音是不可避免的
正如该团队所指出的那样,虽然这项研究对量子传感产生了影响,但在这种系统得到广泛部署之前,仍有一些挑战需要克服。主要限制之一是目前实验中使用的系统的大小。在这项研究中,研究人员使用了相对较少的原子和动量态。将这种方法扩展到更大的系统是必要的,以充分实现其在实际应用中的潜力。
此外,该系统仍然容易受到噪声和退相干的影响,这两者都会降低纠缠度并降低传感协议的有效性。未来的工作将需要专注于最大限度地减少这些影响,可能是通过改进纠错技术和更好地控制原子和光子相互作用。
纠缠物质波的精度未来
科罗拉多大学的团队所进行的研究可能为利用纠缠物质波进行量子增强传感提供新的可能性。通过超越依赖电子相互作用的传统方法,他们展示了一种可以提高各个领域测量精度的方法,特别是在更强大的量子传感器方面,其潜在应用范围从更精确的原子钟到更好的引力波探测器。随着量子传感领域的发展,控制和使用纠缠物质波的能力可能成为一个新的标准。
参与本研究的作者包括John Drew Wilson, Jarrod T. Reilly, Haoqing Zhang, Chengyi Luo, Anjun Chu, James K. Thompson, Ana Maria Rey, and Murray J. Holland。