《Cell,7月28日,Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-08-18
  • Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex
    James Chen 6
    Brandon Malone 6
    Eliza Llewellyn
    Tarun M. Kapoor
    Seth A. Darst 7
    Elizabeth A. Campbell
    Published:July 28, 2020DOI:https://doi.org/10.1016/j.cell.2020.07.033

    Summary
    SARS-CoV-2 is the causative agent of the 2019–2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.

     

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(20)30941-7
相关报告
  • 《Cell,5月22日,Structural basis for RNA replication by the SARS-CoV-2 polymerase》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-23
    • Structural basis for RNA replication by the SARS-CoV-2 polymerase Quan Wang 8 Jiqin Wu 8 Haofeng Wang 8 Luke W. Guddat Peng Gong Zihe Rao 9 Show all authors Show footnotes Published:May 22, 2020DOI:https://doi.org/10.1016/j.cell.2020.05.034 Summary Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre-/post- translocated polymerase complexes. The structures show notable structural rearrangements occurring to nsp12 and its cofactors nsp7/nsp8 to accommodate the nucleic acid compared to the apo complex, while there are highly conserved residues in nsp12 positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanisms of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription/replication machinery.
  • 《7月28日_SARS-CoV-2复制-转录复合物中解旋酶-聚合酶偶联的结构基础》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-08-18
    • Cell期刊于7月28日发表了美国洛克菲勒大学、纽约结构生物学中心、苏黎世联邦理工学院的论文“Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex”。文章指出,SARS-CoV-2基因组通过RNA依赖的RNA聚合酶全酶(亚基nsp7 / nsp82 / nsp12)与一系列辅助因子一起复制和转录。这些因子之一是nsp13解旋酶。holo-RdRp和nsp13都是病毒复制所必需的,是治疗COVID-19的靶标。该文中,研究人员介绍了SARS-CoV-2 holo-RdRp的冷冻电镜结构,该结构具有与nsp13解旋酶的两个分子复合的RNA模板产物。每个nsp13的Nidovirus(套式病毒)目特定的N末端结构域与nsp8每个拷贝的N末端延伸相互作用。有一个nsp13也与nsp12-thumb接触,该结构将解旋酶的核酸结合ATPase域直接置于复制转录的Hol-RdRp的前面,从而限制了nsp13功能的模式。研究人员还观察到ADP-Mg2 +结合在nsp12 N末端Nidovirus RdRp相关的核苷酸转移酶域中,是抗病毒治疗开发的新口袋。 原文链接:https://www.cell.com/cell/fulltext/S0092-8674(20)30941-7