《Cell,6月28日,The Global Phosphorylation Landscape of SARS-CoV-2 Infection》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-06-29
  • The Global Phosphorylation Landscape of SARS-CoV-2 Infection

    Mehdi Bouhaddou †

    Danish Memon †

    Bjoern Meyer †

    Danielle L. Swaney

    Pedro Beltrao

    Nevan J. Krogan 19

    Show all authors

    Show footnotes

    Published:June 28, 2020DOI:https://doi.org/10.1016/j.cell.2020.06.034

    Summary

    The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here, we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAP kinase activation, production of diverse cytokines, and shutdown of mitotic kinases resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodia protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of p38, CK2, CDKs, AXL and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(20)30811-4
相关报告
  • 《bioRxiv,6月6日,Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-09
    • Synthetic Antibodies neutralize SARS-CoV-2 infection of mammalian cells Shane Miersch, Mart Ustav, Zhijie Li, James B. Case, Safder Ganaie, Giulia Matusali, Francesca Colavita, Daniele Lapa, Maria R. Capobianchi, View ORCID ProfileGuiseppe Novelli, Jang B. Gupta, Suresh Jain, Pier Paolo Pandolfi, Michael S. Diamond, Gaya Amarasinghe, James M. Rini, Sachdev S. Sidhu doi: https://doi.org/10.1101/2020.06.05.137349 Abstract Coronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds but have crossed the species barrier to infect humans seven times. Of these, three pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV), and now SARS-CoV-2 coronaviruses, the latter of which is the cause of the ongoing pandemic of coronavirus disease 2019 (COVID-19). Here, we describe a panel of synthetic monoclonal antibodies, built on a human framework, that bind SARS-CoV-2 spike protein, compete for binding with ACE2, and potently inhibit infection by SARS-CoV-2. These antibodies were found to have a range of neutralization potencies against live virus infection in Vero E6 cells, potently inhibiting authentic SARS-CoV-2 virus at sub-nanomolar concentrations. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19. Competing Interest Statement S.S, P.P.P and S.J, are cofounders of Virna Therapeutics. The company is developing novel therapies for COVID-19 and other viruses.
  • 《CELL,5月26日,A mouse model of SARS-CoV-2 infection and pathogenesis》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-27
    • A mouse model of SARS-CoV-2 infection and pathogenesis Shi-Hui Sun 7 Qi Chen 7 Hong-Jing Gu 7 Yu-Sen Zhou Cheng-Feng Qin You-Chun Wang 8 Show all authors Show footnotes Published:May 26, 2020DOI:https://doi.org/10.1016/j.chom.2020.05.020 Summary Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for animal model. Human Angiotensin converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) using CRISPR/Cas9 knock-in technology. Compared with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected- aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was evidenced to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis, and evaluating COVID-19 vaccines and therapeutics.