Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions
Alyssa C Fears, William B Klimstra, Paul Duprex, Amy Hartman, Scott C. Weaver, Ken S. Plante, Divya Mirchandani, Jessica Plante, Patricia V. Aguilar, Diana Fernandez, Aysegul Nalca, Allison Totura, David Dyer, Brian Kearney, Matthew Lackemeyer, J. Kyle Bohannon, Reed Johnson, Robert F Garry, Doug S Reed, View ORCID ProfileChad J Roy
doi: https://doi.org/10.1101/2020.04.13.20063784
Abstract
The emergent coronavirus, designated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a zoonotic pathogen that has demonstrated remarkable transmissibility in the human population and is the etiological agent of a current global pandemic called COVID-19. We measured the dynamic (short-term) aerosol efficiencies of SARS-CoV-2 and compared the efficiencies with two other emerging coronaviruses, SARS-CoV (emerged in 2002) and Middle Eastern respiratory syndrome CoV (MERS-CoV; emerged starting in 2012). We also quantified the long-term persistence of SARS-CoV-2 and its ability to maintain infectivity when suspended in aerosols for up to 16 hours.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.