《Nature Microbiology:微生物视紫红质增强了缺铁环境下硅藻的生产力》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-12-06
  • 微生物视紫红质(Microbial rhodopsins)是将光转化为生物信号或能量的感光蛋白。在硅藻等真核光合浮游生物中黄色视紫红质家族的蛋白质很常见。然而,它们在这些生物体中的生物学作用仍然难以捉摸。德国东安格利亚大学研究人员从北极硅藻Fragilariopsis cylindrus中分离出的黄色视紫红质变体(FcR1),应用生物物理、生物化学和反向遗传学组合的方法,证明FcR1的新型xanthorhodopsin蛋白在铁限制条件下对硅藻的生长起到了关键作用。FcR1是一种质子泵,它可以将光能转化为生物信号或者能量,使硅藻在铁限制的环境下依然能够进行光合作用。实验证明在绿光下,FcR1在质体内的泵活性最高,而在红光下FcR1的作用并不明显。在表层海洋的天然硅藻群落中,黄色视紫红质转录物的丰度与溶解铁浓度反相关。因此,在铁限制条件下,硅藻在绿光照射下的生长明显增强,表明FcR1通过光合作用的方式促进了硅藻的生长。这项研究揭示了xanthorhodopsin家族蛋白质在铁限制的环境下对硅藻生长的重要作用。这不仅为我们更深入地了解硅藻在不同生长条件下的适应性提供了线索,也为光遗传应用和光驱动的生物学研究提供了新资源。(李亚清 编译;熊萍 校稿)

  • 原文来源:https://www.nature.com/articles/s41564-023-01498-5
相关报告
  • 《Nature Microbiology:最大规模的海洋微生物基因组研究》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-09-24
    • 微生物主宰着地球生命,并与海洋密切相关:促进了整个海洋食物链的运作。8月14日发表在《自然微生物学》(Nature Microbiology)的一篇报告中,夏威夷大学(UHM)海洋学教授Ed DeLong和他的团队研究出迄今为止最大的微生物组基因目录。基于这些新信息,研究小组发现营养限制是海洋微生物基因组进化的核心驱动力。 作为一个庞大的群体,海洋微生物在新陈代谢能力方面千差万别,所有的差异性都被编码在它们的基因中。一些海洋微生物的遗传编码允许它们利用从阳光中获得的能量将二氧化碳转化为有机物。另一些微生物将有机物质作为碳和能量的来源,产生二氧化碳这种呼吸终端产品。不仅如此,人们也发现了其他更为奇特的新陈代谢途径。 “一勺海水就有近一百万个细胞,我们如何在几乎不可见的生物中描述这些不同的特性和功能呢?” “一个来自夏威夷群岛以北海水中收集的微生物的基因目录可以解答上述疑问。研究团队参与了“夏威夷海洋时间序列项目(Hawai'i Ocean Time-series Program)”,他们持续在ALOHA站收集海水样本做基因组测序已经超过2年的时间。 在阳光照不到的深层海水中,研究小组观察到了微生物群落信息的急剧变化。在大约250-650英尺之间,微生物的基本组成部分,即基因组和蛋白质发生了巨大的变化。海面附近微生物的基因组要小得多,其蛋白质含氮量也较少。而在更深的海域,400-650英尺范围内,微生物基因组会变得更大,它们的蛋白质也含有更多的氮,同时随着深度的增加,氮的含量也会增加。这些结果表明,海洋环境中的营养物质可能会驱动微生物基因组和蛋白质的进化。”这项研究的另一个令人惊奇的发现是,在阳光照射下,微生物的“基因组过渡区”发生在一个非常狭窄的深度范围内。在大约650英尺深的海底,微生物基因组和蛋白质的基本特性是相对稳定的。” “该研究的新数据将为我们了解海洋微生物群落性质及其功能提供重要工具,同时也有助于预测未来的发展轨迹。” DeLong说。 (刘思青 编译) 原文链接:https://www.nature.com/articles/s41564-017-0008-3
  • 《微生物所在冰川低温细菌研究领域取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-01-21
    • 冰川一直是极端微生物学研究领域的热点环境,其中蕴藏着丰富的低温微生物,冰川生态环境赋予了冰川微生物物种、遗传和代谢的多样性。冰川微生物是发现新材料、新基因、新机制和新功能的理想资源。微生物所菌保中心辛玉华正高级工程师等人多年来致力于冰川低温细菌资源的收集保藏、系统进化和生态适应机制研究,积累了我国11条冰川来源的低温细菌菌种4000余株,在中国普通微生物菌种保藏管理中心建立了我国特色的冰川低温细菌菌种资源库。   在中国科学院微生物所东秀珠研究员带领下,开展了对47株冰川黄杆菌 (Flavobacterium) 的多组学研究,基因组分析发现其中37株含有变形菌视紫红质 (proteorhodopsin, PR) 基因,另外10株不含PR基因。PR蛋白是光驱动的跨膜质子泵,偶联一个视黄醛分子,能够接受光能,将质子从胞内泵到胞外,在细胞膜两侧形成电势能梯度,将光能转变为ATP。目前,国际上普遍认为PR决定了黄杆菌的光促生长表型。然而,光照生长实验发现无论是携带PR基因、缺失PR基因以及人工构建的PR缺失株,冰川黄杆菌均表现出光促生长特性。通过比较基因组学、转录组和表型实验等分析发现,在低氧、寡营养等状态下,冰川黄杆菌的光促生长表型与玉米黄质等色素合成相关,含玉米黄质、番茄红素等β-类胡萝卜素的冰川黄杆菌可以为其提供光保护、维持低温下细胞膜功能等作用,而仅含有黄色素的冰川黄杆菌无法在光照条件下生长。该研究发现了PR可能并非国际上一直以来普遍认为的光促生长关键基因,可能存在新的光/氧调控机制。高山冰川一般位于高海拔地区,表层光照辐射强度大,冰川表层存在可以利用光能的细菌、蓝细菌及藻类等。该研究首次发现,冰川表层优势的非光合细菌在低氧、光照条件下生长速率显著提高,揭示了光照对冰川表层生态系统具有非常重要的影响,发现玉米黄质等色素在冰川环境重要的生态意义,可能影响了黄杆菌在冰川表层环境的适应和种群扩散。      相关研究结果于2021年1月15日,以“Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin”为题在国际主流期刊ISME Journal杂志发表。 中国科学院微生物研究所东秀珠研究员、辛玉华正高级工程师和周宇光正高级工程师为论文的共同通讯作者,刘庆高级工程师、李伟助理研究员、中国科学院武汉病毒所刘翟研究员为共同第一作者。该研究是继菌保中心在冰川稀有类群Cryobacterium耐低温适应性进化机制的发现后,又一重要进展 (Liu et al., 2020),得到了国家自然科学基金委重大研究计划和面上项目的支持。