《中国科学院烟台海岸带所在海水致病菌快速电化学传感分析与鉴别研究中取得新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2021-02-28
  • 海水中致病菌的污染不仅威胁人们的健康安全,而且会对水产养殖业带来巨大的危害和损失。海洋环境中多种致病菌的同时存在可能产生协同作用,使其潜在威胁更加突出;此外,部分致病菌也是耐药基因的主要储存库,在耐药基因的传播和进化中发挥作用。因此,亟需发展海水中多种致病菌的快速鉴别和检测新方法。

    近期,中国科学院烟台海岸带研究所秦伟研究员及其团队,利用生物分子的高选择性识别与电位信号传导双重特性,提出了基于磁控生物识别分子直接电位响应的聚合物膜电极生物传感新方法。抗菌肽作为新的识别分子,不仅能够实现细菌的识别,而且其自身离子的特性能够用于电位信号的传导。基于磁控聚合物膜电位传感技术,该团队以抗菌肽为识别分子,实现了对金黄色葡萄球菌的高灵敏、高选择性检测,检测下限达10 CFU mL-1。作者进一步选用四种多肽作为识别分子,构建了电位型传感器阵列,通过线性判别分析,实现了对环境样品中8种细菌的分类鉴定(如下图所示)。该研究发展的免标记、免指示剂的直接电位传感技术,能够用于环境水体中致病菌等污染物的快速电化学传感分析与鉴别,拓宽了聚合物敏感膜电位传感器的应用范围,为抗体、多肽、核酸适配体等生物识别分子的直接电位分析应用提供了新思路。

    该研究成果近期发表于国际权威化学期刊《德国应用化学》(影响因子:12.959)(Angew. Chem. Int. Ed., 2021, 60, 2609-2613),并被选为热点论文(Hot Paper)。

    原文链接见:https://onlinelibrary.wiley.com/doi/10.1002/anie.202011331

  • 原文来源:http://www.yic.cas.cn/ky/kydt/202102/t20210208_5891236.html
相关报告
  • 《中国科学院烟台海岸带研究所在海水致病菌快速电化学传感分析与鉴别研究中取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2021-03-10
    • 海水中致病菌的污染不仅威胁人们的健康安全,而且会对水产养殖业带来巨大的危害和损失。海洋环境中多种致病菌的同时存在可能产生协同作用,使其潜在威胁更加突出;此外,部分致病菌也是耐药基因的主要储存库,在耐药基因的传播和进化中发挥作用。因此,亟需发展海水中多种致病菌的快速鉴别和检测新方法。 近期,中国科学院烟台海岸带研究所秦伟研究员及其团队,利用生物分子的高选择性识别与电位信号传导双重特性,提出了基于磁控生物识别分子直接电位响应的聚合物膜电极生物传感新方法。抗菌肽作为新的识别分子,不仅能够实现细菌的识别,而且其自身离子的特性能够用于电位信号的传导。基于磁控聚合物膜电位传感技术,该团队以抗菌肽为识别分子,实现了对金黄色葡萄球菌的高灵敏、高选择性检测,检测下限达10 CFU mL-1。作者进一步选用四种多肽作为识别分子,构建了电位型传感器阵列,通过线性判别分析,实现了对环境样品中8种细菌的分类鉴定。该研究发展的免标记、免指示剂的直接电位传感技术,能够用于环境水体中致病菌等污染物的快速电化学传感分析与鉴别,拓宽了聚合物敏感膜电位传感器的应用范围,为抗体、多肽、核酸适配体等生物识别分子的直接电位分析应用提供了新思路。 该研究成果近期发表于国际权威化学期刊《德国应用化学》(影响因子:12.959)(Angew. Chem. Int. Ed., 2021, 60, 2609-2613),并被选为热点论文(Hot Paper)。 原文链接见:https://onlinelibrary.wiley.com/doi/10.1002/anie.202011331
  • 《中国科学院烟台海岸带所在微生物产氢代谢领域取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-06-10
    • 氢气是一种清洁能源,是下一代新能源汽车的动力燃料,有着极为广泛的应用前景。微生物产氢是重要的生产途径之一,属于绿色制造的新兴发展领域,用以支撑经济和社会的可持续发展。 中国科学院烟台海岸带研究所“电能微生物学”研究团队,通过热处理耦合纳米水铁矿(Nano-ferrihydrite)添加的方法,分别从黄河三角洲滨海湿地、天鹅湖和渤海沉积物等样品中定向富集分离获得了若干具有电化学活性的发酵型异化铁还原菌菌株,已获发明专利授权。研究发现,纳米水铁矿被还原的过程显著改变了微生物群落结构及其代谢途径,同时提高了碳代谢和产氢效率。 此外,研究以产氢菌株为研究对象,通过转录组学、电化学、酶学和化学计量分析等方法,揭示了异化铁还原过程促进产氢菌株富集并提高碳代谢和产氢效率的机制。研究发现,纳米水铁矿中的铁还原过程与发酵过程相耦联,使得产氢反应在热力学上相对更加容易发生;铁还原过程会接受电子,从而改变碳流和电子流的方向,产生更多氢气;纳米水铁矿还能够调控菌株基因表达,二组分系统(TCS)、葡萄糖磷酸转移系统(PTS)、NADH脱氢酶和氢化酶等基因均被不同程度地被上调表达;此外,铁还原过程还能够消耗质子,缓解发酵过程中有机酸累积,维持pH值的相对稳定,从而更有利于氢气产生。 系列研究建立了筛选高产氢菌株的技术方法,并且获得了系列菌株资源。研究成果有助于促进微生物产氢领域的技术升级,为海岸带区域经济的绿色制造和可持续发展提供技术支持。相关研究成果已经陆续在ACS Sustainable Chemistry & Engineering (IF 6.97)、Fuel ( IF 5.128)、Bioresource Technology (IF 6.669)和Science China Technological Sciences等重要国内外期刊上发表。 本研究致谢中国科学院战略性先导科技专项(A类)(XDA22050301)、国家自然科学基金委员会“水圈微生物驱动地球元素循环的机制”重大研究计划培育项目(91751112)和“泰山学者”青年专家计划(tsqn20161054)等项目资助。