《Cell:重大进展!鉴定出冠状病毒劫持来感染人类细胞的关键宿主分子》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-12-09
  • 当冠状病毒---包括导致新型冠肺炎(COVID-19)的SARS-CoV-2病毒---感染人时,它会劫持人体的细胞,利用细胞的分子机制来维持自身的生存和传播。在一项新的研究中,来自美国格拉斯通研究所和陈-扎克伯格生物中心的研究人员与加州大学旧金山分校和Synthego公司的科学家合作,鉴定出人体细胞中冠状病毒用来生存的关键分子过程。他们报告说,用药物靶向这些过程,不仅可以治疗COVID-19感染,还可以治疗其他现有和未来的冠状病毒。相关研究结果于2020年12月8日在线发表在Cell期刊上,论文标题为“Genetic screens identify host factors for SARS-CoV-2 and common cold coronaviruses”。

    论文共同通讯作者、格拉斯通病毒学研究所主任Melanie Ott博士说,“我们的研究的独特之处在于,我们并不只是研究SARS-CoV-2,而是同时研究其他冠状病毒。这让我们对可以广泛抑制许多冠状病毒的药物靶点有了很好的了解。”

    作为一个庞大的病毒家族,冠状病毒包括引发普通感冒的冠状病毒和引发更严重症状的冠状病毒。2002年造成致命SARS疫情的SARS-CoV病毒就是一种冠状病毒,此外在中东地区造成MERS疫情的MERS-CoV病毒也是一种冠状病毒。

    论文共同通讯作者、陈-扎克伯格生物中心首席研究员Andreas Puschnik博士说,“现在已经有多次冠状病毒疫情爆发,所以很明显这个病毒家族具有很高的流行潜力。COVID-19并不是我们要面对的最后一种冠状病毒感染。”

    对冠状病毒进行比较和对比

    与所有病毒一样,冠状病毒只能在宿主细胞内生长,它们依靠宿主细胞的分子进行增殖。正因为如此,这些作者希望将目标锁定在病毒用来生存的人类分子上,而不是病毒本身的成分。

    在这项新的研究中,他们用SARS-CoV-2或其他两种引起普通感冒的冠状病毒(HCoV-229E和HCoV-OC43)感染人类细胞,这三种冠状病毒都能杀死这些细胞。接下来,他们使用CRISPR-Cas9基因编辑技术让这些细胞发生突变,并研究了哪些突变让它们不易受到这些冠状病毒的伤害。

    Puschnik解释说,“我们推断,少数能够在这些感染中存活下来的细胞大概是这些冠状病毒用来感染它们或增殖的宿主分子发生了突变。”

    一些结果并不令人惊讶。例如,已知SARS-CoV-2需要人类ACE2受体才能进入人体细胞。因此,ACE2基因发生突变的细胞不再被SARS-CoV2感染或杀死。

    但是,其他发现则出乎意料。这些作者发现,某些基因突变阻止了这三种冠状病毒成功感染和杀死人体细胞。这些突变发生在已知控制人体细胞中两种脂质分子---胆固醇和磷脂酰肌醇磷酸酯(phosphatidylinositol phosphate, PIP)---平衡的基因上。

    胆固醇是一些病毒进入细胞所需要的,但是当这项研究开始时,它还没有在冠状病毒的背景下进行研究。同样,已知PIP在形成病毒经常用来进入细胞内部和周围的小囊泡中起着作用,但它之前并没有与SARS-CoV-2直接相关联在一起。

    通向药物开发的道路

    为了验证与胆固醇和PIP相关的基因对冠状病毒感染的重要性这些作者设计了完全缺乏这些基因的人类细胞,并用冠状病毒感染它们。缺少这些基因的细胞受到保护,不会被这三种冠状病毒感染。同样,当他们使用现有的化合物来破坏PIP或胆固醇的平衡时,这些细胞也不太容易被任何一种冠状病毒感染。这些结果表明,靶向胆固醇或PIP可能是对抗多种冠状病毒的一个有前途的策略。

    Ott说,“对于病毒来说,传统的观点是,我们针对独特的病毒靶点设计药物,这意味着每次有新的病毒时,开发一种药物都需要时间。如果我们能开发出一些更广泛的靶向宿主细胞分子的抗病毒药物,这将大大有助于我们更好地应对未来的大流行性病毒。”

    然而,在这三种被研究的冠状病毒中,并非所有的结果都是一样的。SARS-CoV-2感染所需的一些人类分子并不是这两种普通感冒冠状病毒所需要的,反之亦然。这些发现可能有助于解释是什么让SARS-CoV-2比其他两种冠状病毒更致命。

    还需要开展更多的研究工作来测试靶向PIP和胆固醇的药物的有效性,以及它们是否能够有效地阻止冠状病毒的生长而不会造成危险的副作用。这些作者还希望使用其他冠状病毒--包括SARS-CoV和MERS-CoV--重复筛查,以确定他们所确定的新靶标有多普遍。

    Ott和Puschnik一致认为,这项新的研究是由于来自许多实验室的研究人员毫不犹豫地走到了一起才成为可能。Puschnik拥有研究病毒宿主因子的专业知识,但没有机会进入研究SARS-CoV-2所需的生物安全三级(BSL-3)实验室。今年早些时候,Ott正牵头在格拉斯通研究所开设这样一个实验室,并提出合作。Synthego公司的科学家们提供了研究这些冠状病毒所需的基因改造细胞,格拉斯通研究所高级研究员Nevan Krogan博士帮助分析CRISPR-Cas9筛选的结果。

    Puschnik说,“每个人都完全愿意挽起袖子,集中资源,共同努力,帮助为更好地理解COVID-19做出贡献。”

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(20)31626-3;https://medicalxpress.com/news/2020-12-critical-molecules-coronaviruses-hijack-infect.html;https://news.bioon.com/article/6781795.html
相关报告
  • 《Cell:重大进展!包括新冠病毒在内的β冠状病毒利用溶酶体劫持和离开受感染细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-02
    • 在一项新的研究中,来自美国国家卫生研究院(NIH)的研究人员发现了一种生物途径,当包括SARS-CoV-2在内的β冠状病毒在体内传播时,它们似乎可以利用这种生物途径劫持和离开细胞。更好地了解这一重要途径可能会在阻止这种导致COVID-19疾病的SARS-CoV-2冠状病毒的传播方面提供了重要的新见解。相关研究结果于2020年10月27日在线发表在Cell期刊上,论文标题为“β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway”。 在细胞研究中,这些作者首次发现,β冠状病毒可以通过溶酶体---一种称为细胞“垃圾粉碎机(trash compactor)”的细胞器---离开受感染的细胞。通常情况下,溶酶体会在病毒和其他病原体离开细胞之前将它们摧毁。然而,这些作者发现,β冠状病毒会使得溶酶体的抗病机制失活,从而允许它在体内自由传播。 靶向这种溶酶体途径有可能导致人们开发新的、更有效的抗病毒疗法来对抗COVID-19。在这项研究的结果发表时,正值全球新的COVID-19病例激增,相关的美国死亡人数接近22.5万人。 一段时间以来,科学家们已经知道了病毒会进入并感染细胞,然后利用细胞的蛋白制造机器(即核糖体)进行多次自我复制,然后逃离受感染的细胞。然而,人们对病毒究竟是如何离开细胞的了解有限。 长期以来,传统的观点认为,大多数病毒---包括流感病毒、丙型肝炎病毒(HCV)和西尼罗河病毒--都是通过所谓的生物合成分泌途径离开受感染细胞的。这是细胞用来将激素、生长因子和其他物质运输到周围环境的一条核心途径。科学家们一直以为β冠状病毒也使用这个途径。 但是,在一项关键性的实验中,美国国家卫生研究院国家心肺血液研究所(NHLBI)宿主-病原体动力学实验室主任NihalAltan-Bonnet博士和她的博士后研究员Sourish Ghosh博士,发现了一些不同的东西。她和她的团队将β冠状病毒(特别是小鼠肝炎病毒)感染的细胞暴露在某些已知阻断生物合成途径的化学抑制剂中。Altan-Bonnet说,“令我们震惊的是,这些β冠状病毒竟然从细胞中逃出来了。这是第一个线索表明β冠状病毒也许使用另一条途径。” 为了寻找这种途径,这些作者设计了额外的实验,使用了涉及人类细胞的显微成像和病毒特异性标志物。他们发现β冠状病毒以某种方式靶向高度酸性的溶酶体,并在那里聚集。 这一发现给Altan-Bonnet团队提出了另一个问题:如果β冠状病毒积聚在溶酶体中而溶酶体又是酸性的,那么为什么它们在离开受感染细胞前没有被破坏? 在一系列先进的实验中,这些作者证实在β冠状病毒感染的细胞中,溶酶体会被去酸化,大大削弱了它们的破坏性酶的活性。因此,这些冠状病毒仍然完好无损,并在离开受感染细胞时准备好感染其他细胞。 Altan-Bonnet说,“这些冠状病毒非常狡猾。它们利用这些溶酶体逃出受感染细胞,但它们也在破坏溶酶体,所以这种细胞器无法完成它的工作或功能。” 这些作者还发现,破坏正常的溶酶体功能似乎会损害受感染细胞的免疫机制。Altan-Bonnet说,“我们认为这个非常基本的细胞生物学发现可能有助于解释人们在临床上看到的一些关于COVID-19患者免疫系统异常的现象”。这包括细胞因子风暴,即COVID-19患者血液中过量的某些促炎蛋白会使得免疫系统不堪重负而导致较高的死亡率。 鉴于这一机制已经被确定,科学家们或许可以找到破坏这一途径的方法来阻止溶酶体将病毒输送到细胞外;或者重新酸化溶酶体,以恢复它们在受到冠状病毒感染的细胞中的正常功能,从而使得这些细胞能够对抗COVID-19。这些作者已经发现了一种实验性的酶抑制剂,它可以有效地阻止冠状病毒离开细胞。 她说,“这种溶酶体途径为靶向治疗提供了一种完全不同的思路。”她补充说,还需要开展进一步的研究来确定这种干预措施是否有效,以及现有的药物是否能帮助阻断这种途径。她指出,这些发现可能会对阻止未来可能出现的其他冠状病毒引起的大流行有很大帮助。
  • 《研究综述:COVID-19如何劫持宿主细胞等》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2020-11-30
    • COVID-19如何劫持宿主细胞 德国海德堡大学(Heidelberg University)的研究人员进行了详细的成像分析,以确定导致COVID-19的SARS-CoV-2病毒是如何对感染细胞进行重组的。这只需要24到48小时。他们的图像显示“感染细胞的内膜系统发生了明显而巨大的变化。”“这些系统允许细胞定义不同的隔间和位置。病毒引起膜的变化,所以它可以产生自己的复制细胞器,放大病毒基因组。研究人员将其描述为“大量气泡的聚集:两层膜形成一个大气球。”气球形成了一个屏蔽隔间,病毒基因组在这里繁殖和释放,合并成新的病毒颗粒。 海德堡大学(Heidelberg)传染病分子病毒学系教授拉尔夫·布拉滕施拉格(Ralf Bratenschlager)说:“到目前为止,我们可以预计冠状病毒将变得具有季节性。”“因此,迫切需要开发和实施针对该病毒的预防和治疗策略。” 这些变化是在感染后几小时内观察到的。因为他们相信这可能是新疗法的关键,他们表示希望3D结构信息和他们收集的其他数据能让每个人都能使用。 “我相信,我们正在与科学界共享我们产生的所有数据,这是一个先例,”海德堡电子显微镜核心设备的负责人、团队负责人Yannick Schwab说。“通过这种方式,我们可以支持研究SARS-CoV-2如何与其宿主相互作用的全球努力。” COVID-19和嗅觉 COVID-19的一个特殊特征是丧失嗅觉和味觉,影响约80%的患者。为什么,怎么做,为什么?早期有人担心它会影响中枢神经系统,但越来越多的数据表明它影响了鼻上皮。嗅觉神经元没有ACE2受体,这是SARS-CoV-2病毒感染细胞的主要方式,但支持嗅觉神经元的支撑细胞有。这些细胞参与了粘液中盐离子的平衡,神经元需要这些盐离子向大脑发送信号。当干扰时,它会关闭神经元信号和嗅觉。在最近对携带SARS-CoV-2的金色叙利亚仓鼠的实验中,支持细胞被迅速感染,但嗅觉神经元没有。但是嗅觉上皮完全脱落,影响了具有嗅觉感受器和探测气味的纤毛。目前还不清楚这种破坏是由病毒本身引起的,还是由免疫细胞对病毒的反应引起的。病毒是如何影响味觉的就更不清楚了。味觉感受器细胞也没有ACE2感受器,但舌头上的支持细胞有。 分子碘漱口水对COVID-19有效 犹他州立大学抗病毒研究所的研究人员比较了四种漱口水的抗病毒功效。美国牙科协会推荐两种,1.5%的过氧化氢和0.2%的聚维酮碘。另一种是0.12%的洗必泰葡萄糖酸盐(chlorhexidgluconate),获得了美国药学会的认可。第四种是碘国际公司(ioTech International)开发的分子碘口腔漂洗剂,也接受了测试。测试是由大学研究人员在一个3级生物控制实验室进行的。含碘分子100ppm的漱口水在30秒内完全有效。另一组即使在60秒后仍然部分有效。两种碘溶液都不具有细胞毒性。过氧化氢和洗必定葡萄糖酸洗液显示出毒性。 MMR疫苗可能对COVID-19提供保护 世界组织在佐治亚州沃特金斯维尔进行的一项新研究提供了支持证据,表明麻疹-腮腺炎-风疹(MMR)疫苗可能提供对COVID-19的保护。他们证明,在以前接种过MMR II疫苗的新冠肺炎患者中,腮腺炎IgG滴度与严重程度呈负相关。MMR II疫苗由默克公司生产,含有麻疹的Edmonston毒株、流行性腮腺炎的Jeryl Lynn (b级)毒株和风疹的Wistar RA 27/3毒株。 “在42岁以下接种过MMR II疫苗的人群中,我们发现流行性腮腺炎滴度水平与COVID-19严重程度之间具有统计上显著的负相关关系,”该研究的第一作者、世界组织主席Jeffrey E. Gold说。这进一步证明了MMR疫苗可能对COVID-19具有保护作用。这也可以解释为什么儿童的COVID-19病例率比成年人低得多,死亡率也低得多。大多数儿童在12到15个月左右接种第一次MMR疫苗,第二次接种是在4到6岁。” 解码端粒动力学 端粒是染色体的末端,由长而重复的DNA序列和结合蛋白组成。如果端粒功能失常,就不能保持染色体的稳定性,从而导致癌症等疾病。端粒缩短也与细胞死亡有关。京都大学的研究人员使用一种新的合成探针来可视化活细胞中的染色体尖端。与其他用于分析端粒的探针不同,这些探针使用了一种合成吡啶咪唑聚酰胺(PIP)探针,可以用于活细胞,不那么耗时,也不会用刺激性化学物质使DNA变性。 减少COVID-19传播的最有效战略 西蒙弗雷泽大学的研究人员开发了一个模型,以评估减少COVID-19传播的各种方法的有效性。这些包括身体距离、面具或社交泡沫。他们发现,物理距离是最普遍有效的。社会泡沫和面具更依赖于情况。这项研究创造了“R事件”的概念,即在一个事件中由一个人感染COVID-19的预期人数。这些因素包括传播强度、接触时间、个体距离和混合程度等。然后,他们从各种事件(如聚会、餐饮、夜总会、公共交通和餐馆)的爆发报告中提取数据。他们发现,被感染的可能性很大程度上取决于传播率和在特定环境中所花费的时间。高传输设置包括酒吧、夜总会和过度拥挤的工作场所;低传输设置包括带口罩的公共交通、在餐馆和户外活动时保持距离。他们还指出,在聚会、唱诗班、餐厅厨房、拥挤的办公室、夜总会和酒吧等饱和、高传播率的环境中,口罩和其他屏障可能没有那么有效。 频繁、快速的检测是造成COVID-19瘫痪的关键 科罗拉多大学博尔德分校的一项研究发现,在抗击COVID-19方面,测试频率和测试周转时间比测试灵敏度更重要。也就是说,易于获取的快速检测比高灵敏度的实验室检测更有价值,后者可能需要几天才能得到反应(或需要几天才能完成)。他们认为,每周对半数人口进行廉价、快速好转的COVID-19检测,可以在数周内几乎消灭病毒,即使它们的敏感性明显低于黄金标准的PCR检测。从本质上说,更快的数据让人们更早地自我隔离。 该研究的主要作者、科罗拉多大学博尔德分校计算机科学助理教授丹尼尔·拉尔莫尔(Daniel Larremore)说:“我们的重大发现是,当涉及到公共卫生问题时,最好是今天做一个有结果的不那么敏感的测试,而不是明天做一个有结果的敏感测试。”“与其让所有人呆在家里,这样你就可以确保一个病人不会传播病毒,我们可以让只有那些有传染性的人待在家里,让所有人都可以继续生活。”