《美国初创称将打造百万量子比特的光量子计算机,公司估值超过30亿美元》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2024-11-29
  • 【内容概述】2016 年,PsiQuantum 公司创始人杰里米·奥布莱恩(Jeremy O'Brien)与三位学者一起创立了该公司。短短八年间,这家总部位于美国加利福尼亚州帕洛阿尔托的公司已发展成为拥有 350 名员工的企业,其资金储备可能已经与谷歌或 IBM 的内部量子计算项目相当。

      PsiQuantum 的技术路线与其他主要竞争对手有着本质区别,其选择了一条不同的道路,使用光的粒子,作为量子比特在技术层面,PsiQuantum 使用一种叫做光束分束器的光学设备,将单个光子同时发送到蚀刻在硅片上的两条路径(波导)中。由于光子没有电荷和质量,它们基本上不受周围环境的影响。这意味着即使在室温下,基于光子的量子比特也能避免困扰其他硬件的许多类型的噪声干扰。这种保持量子信息并能高速长距离传输的能力,让构建大规模高速系统成为可能。

      在制造方面,PsiQuantum 与美国半导体巨头格罗方德(Global Foundries)建立了合作伙伴关系。他们的光子器件将采用 45 纳米技术,工艺流程包含 35 层和 600 多个步骤。所有组件都使用 C 波段波长,以便与光纤通信兼容,为设计的灵活性和新功能的开发提供了更多可能性。

      目前,PsiQuantum 已经在英国建造了小型光子系统,一个更大的系统正在美国斯坦福直线加速器中心安装。用于斯坦福项目的大型制冷器已经完工,正在等待安装输送氦气的管道系统。根据计划,这些制冷器将在今年年底前在斯坦福安装完成,2025 年将安装大量单光子源用于系统评估。

      在澳大利亚布里斯班,PsiQuantum 获得了6.2亿美元的政府资金支持,计划到 2027 年建成第一台实用规模的容错光量子计算机。此外,该公司将作为美国伊利诺伊量子和微电子园区的主要承租方,获得 30 年内价值 5 亿美元的税收优惠,并计划建造一台百万量子比特的光量子计算机。

      如今,PsiQuantum 正在英国建造原型机,这些设备高约 2 米包含了低温制冷设备和许多必要的计算组件。并且,更大规模的设备将于 2025 年在美国投入使用。

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzUzNTA0NDI1Ng==&mid=2247501353&idx=2&sn=dd63573eb5d8622547b69076350edecb&scene=0
相关报告
  • 《前沿 | 美国初创称将打造百万量子比特的光量子计算机,公司估值超过30亿美元》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-11-29
    • 在量子计算领域,有一家美国初创公司正在追逐一个看似遥远的目标:利用光子打造强大的量子计算机。 到目前为止,这家名为 PsiQuantum 的公司已经筹集了超过 10 亿美元资金,估值超过 30 亿美元,其雄心勃勃的计划正引来越来越多的关注。 2016 年,PsiQuantum 公司创始人杰里米·奥布莱恩(Jeremy O'Brien)与三位学者一起创立了该公司。 短短八年间,这家总部位于美国加利福尼亚州帕洛阿尔托的公司已发展成为拥有 350 名员工的企业,其资金储备可能已经与谷歌或 IBM 的内部量子计算项目相当。 PsiQuantum 的技术路线与其他主要竞争对手有着本质区别。传统的量子计算公司通常使用原子、离子或超导材料制成的量子比特,这些都是具有质量且通常固定在某个位置的物理对象。 而 PsiQuantum 选择了一条不同的道路,使用没有质量的光子,也就是光的粒子,作为量子比特,这些被称为“飞行量子比特”的光子具有独特优势。 图  PsiQuantum 的原型低温柜 在技术层面,PsiQuantum 的方法“理论上很简单”。他们使用一种叫做光束分束器的光学设备,将单个光子同时发送到蚀刻在硅片上的两条路径(波导)中。由于光子没有电荷和质量,它们基本上不受周围环境的影响。 这意味着即使在室温下,基于光子的量子比特也能避免困扰其他硬件的许多类型的噪声干扰。这种保持量子信息并能高速长距离传输的能力,让构建大规模高速系统成为可能。 然而,这条技术路径也面临着诸多挑战。首先,难以按需产生近乎相同的单个光子;其次,光子容易被吸收和损失;最困难的是,让这些“飘忽不定”的粒子相互作用。 为了解决这些问题,PsiQuantum 公司投入了大量资源进行技术创新。例如,他们建立了自己的设施来生长高纯度的钛酸钡晶片,希望用这种材料高效地引导光线。 在制造方面,PsiQuantum 与美国半导体巨头格罗方德(Global Foundries)建立了合作伙伴关系。他们的光子器件将采用 45 纳米技术,工艺流程包含 35 层和 600 多个步骤。 所有组件都使用 C 波段波长,以便与光纤通信兼容,为设计的灵活性和新功能的开发提供了更多可能性。 目前,PsiQuantum 已经在英国建造了小型光子系统,一个更大的系统正在美国斯坦福直线加速器中心安装。用于斯坦福项目的大型制冷器已经完工,正在等待安装输送氦气的管道系统。 根据计划,这些制冷器将在今年年底前在斯坦福安装完成,2025 年将安装大量单光子源用于系统评估。 在澳大利亚布里斯班,PsiQuantum 获得了6.2亿美元的政府资金支持,计划到 2027 年建成第一台实用规模的容错光量子计算机。 此外,该公司将作为美国伊利诺伊量子和微电子园区的主要承租方,获得 30 年内价值 5 亿美元的税收优惠,并计划建造一台百万量子比特的光量子计算机。 尽管公司获得了巨额投资和政府支持,但也面临着质疑。一些科学家担心公司承诺的目标可能难以实现。 美国加州大学伯克利分校的量子物理学家西蒙·科尔科维茨(Shimon Kolkowitz)认为,押注 PsiQuantum 是“风险极高的”。 与其他竞争对手相比,该公司展示的成果相对较少,他们没有选择逐步展示几十或几百个量子比特的系统,而是直接瞄准需要约百万量子比特的大型机器。 对此,该公司高管对媒体表示,他们已经取得了比公开展示更多的进展,投资方也已经仔细审查了他们的计划。奥布莱恩谈到这些挑战时用的都是过去时,并坚持认为成功几乎是毫无疑问的。 一些独立研究人员也认为该公司的计划是可行的。法国国家科学研究中心的量子光学物理学家帕斯卡尔·塞内拉尔(Pascale Senellart)称,这是“一场令人惊叹的赌注,非常值得探索”。 如今,PsiQuantum 正在英国建造原型机,这些设备高约 2 米,包含了低温制冷设备和许多必要的计算组件。并且,更大规模的设备将于 2025 年在美国投入使用。 根据奥布莱恩的说法,PsiQuantum 的最终计算机将需要约 100 个这样的设备,占地面积相当于一个仓库。 总的来说,在这个充满不确定性的量子计算竞赛中,PsiQuantum 选择了一条与众不同的道路。尽管面临诸多质疑和挑战,当前科技界仍在密切关注它能否成功打造出世界上第一台实用的光量子计算机。
  • 《量子计算机研发20年 刚进入它的“电子管时代”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-10
    • 量子计算机刚进入它的“电子管时代” 虽然无数次听过量子计算机的大名,但就像所有带“量子”两字的概念,人们大多不甚了然。 量子计算机的概念1980年代提出,投入研发20年,迄今还没有一台真正走出实验室。但传说它(将来会)很厉害。谷歌、IBM、阿里巴巴和许多初创公司在竞争,想第一个实现“量子霸权”,也就是让量子计算机在一个计算任务中快过传统计算机。 粗浅了解一点量子计算机的原理后,你会发现其实它和我们熟知的电脑差不了多少。 量子计算机:量子版的计算机 “别把量子计算机想成全新的系统,它就是经典计算机的扩展版,处处模仿经典计算机。”安徽问天量子科技股份有限公司首席科学家、中国科学技术大学中国科学院量子信息重点实验室韩正甫教授告诉科技日报记者。 韩正甫说,经典计算机以电压高低代表数字1或0,即为一比特(bit)。 而量子计算机里对应的是量子比特(Q-bit),那可能是自旋箭头向上或向下的一个电子,也可能是“立直振动”或“躺平振动”的光波…… 传统计算电路由各种“逻辑门”组成,对应的就是量子计算机的各种“量子逻辑门”。都是根据一定的规则,变化存储位的0和1。 韩正甫说:“传统计算机是这么玩的:一排存储位写进去一个初值(比如10011001)。接下来若干步操作,每一步存储器里边的数都变换成另外一组数。走完程序停下来,把里面的数读出来,比如00101010,就是计算结果。”量子计算机同样如此。 量子计算机不同之处,是丘比特(Q-bit)特别灵活,没bit那么死板。它同时是0和1。比如:它是六成的0和四成的1。这让它有了超能力。学过一点量子力学才能理解Q-bit的奥妙。 模糊又精确的Q-bit 什么叫“它是六成的0和四成的1”呢? 补习一下高中物理:20世纪初的实验发现,物质细小到极限,就无法被准确测量。因为测量意味着干涉,哪怕你只看一眼。当对象微小到了量子级别,它的状态会被观测彻底破坏。(顺便一说,“一触即溃”的效应被用于量子通信。用量子来承载密码,可以做到有人窃听这个密码信号,一定会被发觉。)这就叫“测不准原理”。东西越小,就越显得模糊。你去测量一个电子的位置,这次测出来在北京,下次测出来在天津。我们只能说一个量子“大概率在北京”,“大概率自旋箭头冲上”,“大概率平躺着振动”…… 这些概率,是可以多次测量确定的,虽然单次测量的读数不一定。 所以量子比特是模糊的也是精确的:同一个数时而读出0,时而读出1;但多次去读,出现0的概率会趋于一个定值,比如说60%。 为什么量子计算更快? “在传统计算机里,一个高电压叠加另一个高电压,仍然是一个高电压;量子比特的叠加则不同。”韩正甫说。 量子比特存储的是一个矢量,就好像一个时钟,时针对应着概率。 时针可以指向零点(量子比特读数100%是0),或指向三点(读数100%是1)。或指向一点半(50%是0,50%是1),或指向任意一个角度。 传统计算机存储的是“10011001”。 量子计算机存储的是“钟钟钟钟钟钟钟钟”。(请自行想象酒店大堂挂的一排钟表) 传统计算中,1和0叠加为1,再叠加一个1,得到0。 量子计算中,“三点”和“零点”叠加为“一点半”,再叠加“三点”,得到的是“两点一刻”。 比起bit,Q-bit更有表现力。一个Q-bit可蕴含无限复杂的数字。在这个意义上“以一抵多”。一个Q-bit投入变换,等于多位数字一起变换,即所谓“并行计算”。 并行计算潜力发挥到极限的情况下,量子计算机的算力比起传统计算机,是2^n∶1。 但要强调的是: 量子计算机的结果来自概率统计。量子计算机与传统不同,它要一次次重复程序,一次次地读数(每次结果都不一样)。周而复始,足够多次(让概率的可信度超过99.99999%)后,统计出各量子位为1和0的比例,那才是需要的数字。所以碰上不太复杂的计算任务,量子计算可能比经典计算机更慢。 彩虹与斑马 有量子计算机之前,数学家就在畅想利用量子比特的“丰富内涵”大大缩减计算时间。不过迄今数学家只证明在两种场景中,量子计算大大快于传统计算机。 首先是破解RSA算法。RSA是现在最常用的加密方法,其机理是利用因数分解的困难——把两个大质数相乘很简单,而把乘积拆成两个质数,计算机可能得算几万年。 所以银行可以公开发送一个几千位的数字,并掌握它的两个质因数,而不担心有人算出这两个质因数——用于制造私有的数字钥匙。 但二十多年前Peter Shor证明一种基于量子计算机的算法,可以轻松分解因数,这也让学界研发量子计算机的兴趣大增。 另一种可能的应用是“搜寻未排序的大数据库”,或者叫“大海捞针”。传统计算机只能一个一个比对目标,而量子计算机则可以并行计算。传统计算机用时是T的话,量子计算机用时是“根号T”。前者要花费1百万小时的任务,后者一千小时就能解决。 除了以上两类计算,量子计算机还被寄希望于未来在化学、制药等领域大发神威。理由是:不同于传统计算机,量子计算机是真正的模拟计算机,可以重现真实的自然(物理学家费曼第一个指出这点)。 传统比特的0和1相当于黑白两色,量子比特的“可以指向任何角度的时针”就相当于全彩色谱,可显示出任何一种颜色。 如果说传统的存储器是斑马,量子存储器里就是彩虹。世界是多彩的,用彩虹去描绘世界,当然更直接,更便捷。 才刚起步 量子很脆弱,动不动就会崩溃。 “要将信息编码在一个非常微小的东西上去,比如一个电子,或一个原子核,都首先要把它孤立开来,让它跟周边不作用。这种细微的控制是很难的。”韩正甫说。 各种量子载体都伴随着独特的困难,比如光子时刻前进,电磁场又左右不了它,操控起来很麻烦。目前研究者大概在实验几十种载体:电子、光子、陷阱里的离子…… 韩正甫说:“隶属中科大的中国科学院量子信息重点实验室,现在正副教授就有50多人,在读的博士生有150人,博士后近30位,一个团队里有很多不同的组,研究的事情虽然互相可以理解,但术业有专攻,比如‘做硅’的就会去研究曝光、清洗等等半导体行业关心的工艺;‘做光’的研究激光发生器、振荡器、光纤之类。” “国内从1980年代初开始量子光学研究。现在多了不少人,但还是个冷门。专业人才稀缺。”韩正甫说,“其实全世界人才都不够。所以谷歌花了几亿美元从加州大学圣芭芭拉分校挖了一个团队过来,主要研究超导量子计算机。” 目前各大公司和研究机构仍在提升量子比特量——争取几十个量子同时稳定,别太快塌陷。超导机器为了让环境接近绝对零度,成本高达成百上千万美元。工程实验机在进步,但几时走到实用还不知道。 回顾1946年第一台计算机ENIAC,用了18000个电子管,那是一种抽成真空电子飞行其中的玻璃管。ENIAC重30吨,每秒钟仅计算5000次。没有十多年后的半导体革命,就谈不上今天的电脑和手机。 应该说,量子计算机刚进入它的“电子管时代”。