《具有高PL强度的硅基InP QD》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2020-11-22
  • 美国伊利诺伊大学已经实现了硅基的单片磷化铟(InP)量子点(QD)技术,相对于在砷化镓(GaAs)上生长的结构而言,其光致发光(PL)强度仅降低了一点。该团队表示有望将InP QD用于微型发光二极管(micro-LED)和激光器。

    研究人员使用固体源分子束外延(MBE)生产QD样品。基板由GaP / Si和4.3μm的GaAsyP1-y逐步梯度缓冲液组成,将GaAs / Si材料切割成较小的块,以进行QD生长。

    将GaAs / Si与比较纯的GaAs零件一起加载到MBE设备中。在快速热退火(RTA)之前,去除表面InP QD和50nm AlGaInP来制备用于PL分析的QD样品。InP QD PL强度的最佳RTA条件是750°C 5分钟,其PL强度的维持归因于相对于螺纹位错密度的高点密度。

    自InP量子点的PL发射相对于整体InP发生了0.4eV蓝移。与纯GaAs衬底相比,在GaAs / Si上生长时,InGaP QW结构的PL强度降低了9倍。相比之下,InP量子点受GaAs / Si增长的影响相对较小,并且硅基InP QD的集成发射强度比InGaP QW的集成发射强度高8倍。发光谱显示,GaAs上InGaP-QWs和InP-QDs的基态发射分别为649nm波长(1.91eV)和713nm(1.74eV)。相应的半高全宽(FWHM)为24meV和65meV。

    AFM显示点密度为1.3×1011 / cm 2,该密度高于以前的报道。高的点密度被视为是硅基QD的发射器进行有效发光和缺陷容忍的必要条件。典型的InAs QD密度约为5x1010 / cm2。阴极发光表明穿线位错密度为3.3x107 / cm2,比InP点密度低大约四个数量级。

相关报告
  • 《硅基铟镓砷量子阱晶体管》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-03-31
    • 瑞士的IBM Research宣布称硅基射频III-V金属氧化物半导体场效应晶体管(MOSFET)的高频截止值最高,并且他们的设备优于最先进的硅RF-CMOS。 研究人员使用由磷化铟阻挡层定义的铟镓砷(InGaAs)量子阱(QW)通道,减少了边界陷阱对测量频率范围内跨导的影响。 使用直接晶圆键合将QW沟道材料集成在硅基掩埋氧化物(BOX)上,其中氧化硅上的硅层不是有意掺杂的。替代金属栅极制造工艺始于沉积非晶硅伪栅极。氮化硅用于源极/漏极间隔,使用原子层沉积(ALD)和反应离子蚀刻的组合实现间隔物形成。用于接触延伸的空腔由受控氧化和蚀刻的“数字”循环形成。数字蚀刻还从源极/漏极接触区域移除了顶部InP阻挡层。通过金属有机化学气相沉积(MOCVD)用n-InGaAs填充接触延伸腔。然后移除伪栅极并用氧化铝和二氧化铪高k栅极绝缘体以及氮化钛和钨栅极金属层代替。 20nm栅长MOSFET的输出电导比没有顶部InP屏障的参考器件高50%。顶部屏障的存在消除了半导体/栅极氧化物界面处的缺陷散射。当栅极长度为120nm时,QW MOSFET的峰值跨导比参考器件的峰值跨导大300%。在20nm的短栅极长度下,改善降低至60%。QW通道的有效移动性为1500cm2 / V-s,而没有顶部InP屏障的通道的有效移动性为500cm2 / V-s。研究人员评论说:“这种差异是因为使用QW减少了氧化物界面陷阱和表面粗糙度散射。” 20nm栅极长度MOSFET的截止频率(ft)为370GHz,最大振荡(fmax)为310GHz。该装置具有两个4μm宽的门指从中心杆分支。这些值代表了硅片上III-V MOSFET报告的最高组合ft和fmax。
  • 《硅基连续波QDash激光器》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2020-12-06
    • 中国香港科技大学(HKUST)宣称制造了首个硅基连续波(CW)C波段(?1580nm波长)QDash激光二极管,其阈值电流密度低至1.55kA / cm2。该团队还建议QDash格式可用于半导体光放大器、调制器和光电探测器。除了高速大容量数据传输外,此类器件还可以用于光检测和测距(LiDAR)组件。 将硅基板在氢气中进行800℃的退火。第一缓冲层是1μm的砷化镓(GaAs),作为平面硅和InP晶格之间的中间层。通过在330°C至780°C之间进行五阶段热退火循环,可降低此缓冲区中的缺陷密度,并将x射线衍射(XRD)摇摆曲线半最大宽度(FWHM)从580弧秒减小到380弧秒。在10μmx10μm场的原子力显微镜分析中,平面Si(GoPS)上GaAs的均方根(RMS)表面粗糙度为1.1nm。 3.1μmInP缓冲液也分三步生长:445°C、555°C和630°C。在最高温度下生长InP,超晶格之间的InP间隔层厚度为250nm。2.8nm RMS的表面粗糙度略大于GaAs表面。表面的透射电子显微镜(TEM)分析给出了3.6x108 / cm2的缺陷密度的估计值,标准偏差为0.4x108 / cm2。 在此材料上生长了各种QDash结构。QDashs本身是从应变InGaAs上的InAs层组装而成的。使用InGaAs和/或InAlGaAs封盖工艺在低温和高温步骤中生长了一系列“井中”(DWELL)QDash层。QDash DWELL被夹在单独的限制异质结构之间,即InP模板晶格匹配的InAlGaAs覆层。 为了确定包层的最佳光学限制,改变折射率对比和层厚度,研究人员制作了三个不同的样品。发现QDashs沿[1-10]方向拉长,点密度为3.5×1010 / cm2。使用了InGaAs帽的样品B光致发光强度最高,从而减小了阱与QDash之间的能隙。 相对于样品C,样品B中InAlGaAs势垒的较低铝含量也降低了带隙并增加了折射率。这应导致改善的光学限制,但是减小的带隙可能会降低DWELL层中载流子限制的风险。 对于电泵浦激光器,生长顺序为600nm n-InP触点、630nm n-InP包层、三层QDash有源区、1500nm p-InP包层和140nm p-InGaAs触点。 三种类型的QDash结构用于脊形波导激光二极管中,第一台面终止于有源区上方,第二台面终止于n-InP接触层。在切割成激光棒之前,将样品减薄至100μm。刻面未涂覆。所有器件的脉冲测试中的开启电压约为0.7V。样品A的激光二极管在连续波(CW)工作时不会发光。同样,样品B在低阈值电流方面以及在最高温度90°C下的操作表现最佳。在脉冲条件下,样品B激光二极管的特征温度(T0)反映阈值变化较高。 激光二极管结构的变化(脊向下一步形成到n-InP触点)使得在8μmx1.5mm器件的CW操作中,可以将阈值电流密度降低到1.55kA / cm2。单面输出功率高达14mW。由于腔体尺寸较大,发射光谱由多个集中在1580nm处的峰组成,支持多种Fabry-Perot模式。