登录
机构网站
切换导航
登录
机构网站
首页
到馆服务
学科服务
研究支持
情报产品
数据资源
科学传播
关于我们
首页
情报产品
快讯详情
《杂化钙钛矿:降低纳米线激光器阈值》
来源专题:
纳米科技
编译者:
chenfang
发布时间:
2015-06-16
杂化钙钛矿是一种新的纳米线激光器材料。这些一维纳米结构的钙钛矿能够调节激光波长,使其保持在一个较低的阈值,标志着集成光子学上成功的一步。
展开更多
129浏览量
0点赞
收藏
原文链接
分享
评论
相关报告
《复旦开发高效的蓝光发射钙钛矿纳米晶》
来源专题:
光电情报网信息监测服务平台
编译者:
husisi
发布时间:
2020-09-25
胶体CsPbX3(X=Br、Cl和I)钙钛矿纳米晶在整个可见光谱上表现出可调谐的带隙,在绿色和红色区域表现出较高的光致发光量子产率。但是,由于缺乏高效的蓝光钙钛矿纳米晶,限制了它们在光电应用中的发展。 来自复旦大学张树宇副教授团队最新研究表明,CsPbBr3纳米晶通过钕掺杂可以实现从绿光到深蓝光的可调谐光电发射,在中心波长在459 nm处的纳米晶具有90%的量子产率。相关论文以题为“Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping”发表在Advanced Science。 自2015年第一次报告以来,全无机铯铅卤化物钙钛矿CsPbX3 (X=Br、Cl和I)纳米晶(NCs)经历了快速发展。由于其高光致发光量子产率(PLQYs)和窄带单峰发射剖面,组成和相关带隙的灵活性以及材料合成过程简单,在发光二极管、激光器、太阳能电池、和光电探测等领域具有很大的应用潜力。特别是,NCs可以作为白色发光二极管(WLED)的颜色转换荧光粉,并表现出广泛的色域覆盖。此外,光谱的蓝色部分通常是从氯化物基钙钛矿NCs中获得的,该NCs目前具有较低的稳定性和相对较低的PLQY,从而限制了钙钛矿NCs在器件中的应用。 解决这些挑战的一个有效的解决方案是用B位掺杂剂完全或部分取代Pb2+离子。掺杂离子不仅降低了铅的毒性,而且可以通过接近优化的Goldschmidt公差因子来提高CsPbX3 NCs的热稳定性和相稳定性。B位阳离子在决定钙钛矿的电子能带结构及其发射特性方面也起着至关重要的作用。最近的研究已经证明了成功的B位掺杂采用碱土金属离子、过渡金属离子、类金属离子和镧系离子。双发射是Mn2+、Yb3+、Er3+和Eu3+等掺杂物的另一个常见特征,它来源于钙钛矿主体到掺杂客体的能量转移,但是,原始NCs的窄带单峰发射不可避免地受到损害。 通过Sn2+,Cd2+,Zn2+或Al3+部分交换Pb2+可以成功地实现光致发光(PL)蓝移,而没有其他发射峰。但是上述蓝光发射NCs的PLQY仍然不令人满意。为了解决这一问题,通过将Nd3+引入到CsPbBr3 NCs中作为B位掺杂剂,合成了高效的蓝色发射钙钛矿NCS。 图1. a)CsPbBr3:xNd3+ (x=7.2%) NCs和原始CsPbBr3NCs薄膜的XPS谱。高分辨率XPS光谱分别对应于b)Nd3+3d,c)Pb2+4f和d)Br− 3d。空心圆形符号表示原始数据,实心曲线表示相应的拟合曲线 图2. a)原始CsPbBr3的计算带结构。轨道特征显示了Pb 6s,6p和Br 4p轨道。b)原始CsPbBr3的VBM和CBM的部分电荷密度。c)计算的CsPbBr3:xNd3+的能带结构(x =12.5%)。轨道特征显示了Pb 6s,6p和Br 4p轨道以及Nd 5d轨道。d)Nd3+掺杂的CsPbBr3的VBM和CBM的部分电荷密度 图3. CsPbBr3:xNd3+NCs的溶液时间分辨光致发光衰减曲线 图4. a)WLED的发射光谱。插图显示了工作中的WLED的相关照片。b)与NTSC电视标准和Rec. 2020年标准相比,本工作中WLED的色域。白点显示WLED设备的CIE颜色坐标为(0.34,0.33) 总的来说,通过便捷的室温合成方法首次成功的将Nd3+成功取代了胶体CsPbBr3 NCs中的Pb2+。掺杂浓度可用于以受控方式将发射光谱从绿色调整为蓝色。发出蓝色的CsPbBr3:xNd3+(x = 7.2%)NCs的PLQY值为90%,光谱宽度为19 nm。使用第一性原理计算证明带隙可调性主要由掺杂剂诱导的电子变化驱动,而PLQY的增加与掺杂剂诱导的电子变化驱动的激子结合能增加以及掺杂剂诱导的激子振动子强度提高有关。这种微观上的理解为胶体CsPbX3 NC中的B部位组成工程开辟了新的可能性。
展开更多
265浏览量
0点赞
收藏
原文链接
评论
《美用新方法研制基于CsPbBr3的纳米线和纳米激光器》
来源专题:
福建物质结构研究所所级服务
编译者:
fjirsmyc
发布时间:
2016-03-16
美国劳伦斯伯克利国家实验室杨培东和Stephen R. Leone组成的联合研究团队日前报告说,他们找到一种新的方法,可用于制作纳米尺度的线材以及色彩可调谐的纳米级激光发生器。相关研究成果发表在2月23日出版的《国家科学院院刊》上(Lasing in robust cesium lead halide perovskite nanowires, PNAS, 2016, DOI: 10.1073/pnas.1600789113)。这些线材最小直径200纳米,融入多种其它材料能够发出明亮和稳定的激光,有望应用于光电子领域,实现数据传输等应用。 借助一种简单的化学浸渍溶剂工艺,研究人员让材料自组装成纳米晶、纳米块体和纳米线。 研究人员把一种含铅薄膜浸入含有铯、溴和氯的甲醇溶剂,再将溶剂加热至50摄氏度,所形成的CsPbBr3晶体结构线材直径在200纳米至2300纳米之间,长度在2微米至40微米之间。 杨培东说,“让人惊异的是,这其中的化学过程相当简单。”相比之下,如果以标准工艺制作纳米线,需要昂贵的仪器和高温等苛刻条件,效果却未必理想。 CsPbBr3纳米线的扫描电镜(SEM)图 在激光实验中,纳米线材作为激光发生器被置于一块石英基底上,在另外一个激光发生器激发下发出光线。研究人员确认,接受单个脉冲持续时间极短(仅为1秒钟的10万万亿分之一)的可见紫色激光脉冲激发后,纳米级激光发生器发出的光线超过10亿个周期,显示出极为稳定的性能。 按照杨培东的说法,这是据他所知迄今为止第一个完全以无机材料、即不含碳材料制作的纳米级激光发生器。而且实验表明,这种激光器发出的光线在一定范围内可调谐,包括可见绿光和蓝光等波段。 借助透射电镜(TEM),研究人员发现,纳米线材的晶体结构与天然生成的钙钛矿相似,类似于盐,易受空气中水分的侵蚀。针对这一缺陷,杨培东设想,可以用聚合物或其他材料涂覆纳米线材,保护它免受侵蚀。 纳米级激光发生器所使用的这类纳米新材料,在开发新一代高效太阳能电池进程中同样显现应用前景。杨培东说,过去短短几年间,对这类材料的研究取得长足进展,而创制纳米级激光发生器有望为这些材料开拓一个全新前沿应用领域。 相关阅读:物理学家组织网英文报道 (摘编自 新华社)
展开更多
58浏览量
0点赞
收藏
原文链接
评论