《中国科学院海洋研究所研究揭示热带东南亚对北半球高纬快速气候事件的响应机制》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-12-21
  • 在全球变暖的背景下,海平面上升和极端气候事件是当前人类所面临的两大主要气候问题,然而,热带东南亚地区对此的气候反馈目前仍属未知。为了探究这一科学问题,中国科学院海洋研究所万世明研究团队通过研究西北婆罗海槽CG18孔的陆源沉积物组成和沉积通量的时间序列演化,识别了过去4万年以来它们对海平面变化和古洪水活动的沉积响应,进而揭示了热带东南亚对北半球高纬快速气候事件的响应机制。相关研究成果发表在国际地学期刊(Nature Index)Geophysical Research Letters上。

    锶、钕同位素结果表明,CG18孔的陆源沉积物主要来自于西北婆罗洲。研究发现,在轨道时间尺度,海平面变化是控制西北婆罗海槽陆源沉积的主要因素,尽管西北婆罗洲仅发育有十分狭窄的大陆架。此外,CG18孔的陆源平均粒径和沉积通量结果显示末次盛冰期海平面下降至最低发生在约2.1万年前,且末次冰消期发生过三次海平面快速上升事件,分别对应于三次冰融水脉冲事件(MWP–19 ka、MWP–1A和MWP–1B)。

    CG18孔的磁化率和粒度组成结果显示,在D–O旋回的冷阶,西北婆罗海槽发育有由洪水引发的异重流沉积。现代观测结果也表明,在东亚冬季风强的年份,马来西亚通常有大洪水事件发生。因此,结合现代观测和古指标记录结果,我们发现北高纬变冷能够导致热带东南亚洪水事件的发生,其主要通过影响东亚冬季风和热带辐合带得以实现。一方面,当北半球高纬变冷时,强烈的东亚冬季风穿过南海携带大量水汽抵达热带东南亚,由于受到山地地貌的阻挡,向上爬升形成强降雨,进而引发洪水事件的发生。另一方面,由于受到北高纬变冷和厄尔尼诺的共同影响,造成了热带辐合带在北半球低纬区的收缩,同样也会引发东南亚洪水事件的发生。此外,我们的新记录发现,在D–O旋回冷阶,持续强烈的东亚冬季风能够将大量源于北方的水汽输送到西北婆罗洲,造成了同时期西北婆罗洲石笋相对较高的δ18O值,此时的石笋氧同位素信息可能不再反映当地降雨量的变化,而是指示了水汽来源的信号。

    该研究的各种发现表明,源于北半球高纬的快速气候事件能够通过对海平面、东亚冬季风和热带辐合带的影响转化为热带东南亚的气候波动,造成当地海平面的快速上升、降雨增强以及洪水事件的爆发。显然,这些信息对于正确评估热带东南亚地区未来的海平面上升和洪水风险至关重要。

    中国科学院海洋研究所黄杰副研究员是论文第一/通讯作者,研究得到了崂山实验室科技创新项目、中国科学院战略性先导科技专项和国家重点研发计划等项目的共同资助。 

    论文信息:Huang, J.*, Wan, S., Chang, F., Liu J., Yang, Z., Sun, H., Ma, X., Li, A., & Li, T. (2023). Rapid climate links between high northern latitudes and tropical Southeast Asia over the last 40 ka. Geophysical Research Letters, 50, e2023GL107171.

    原文链接:https://doi.org/10.1029/2023GL107171

     

  • 原文来源:https://qdio.cas.cn/2019Ver/News/kyjz/202312/t20231215_6943434.html
相关报告
  • 《中国科学院海洋研究所研究揭示日本海对马暖流的长期演化历史》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-04-29
    • 近日,国际地学期刊Earth and Planetary Science Letters《地球与行星科学通讯》(Nature Index)在线发表了中国科学院海洋研究所万世明研究团队在晚新生代对马暖流演化方面的最新研究成果。研究团队和美国罗德岛大学、日本东京大学、海南大学等单位开展合作,基于综合大洋钻探计划IODP 346航次在日本海中部和南部钻探获取的沉积物岩芯的硅藻化石记录,重建了过去约1500万年以来对马暖流的演化历史,发现明显的对马暖流活动最早出现于约1200万年前,揭示了印尼海道的变窄和全球气候变化驱动了西太平洋暖池-黑潮流系-对马暖流的协同演化。 西太平洋暖池作为全球最重要的热量和水汽源区,在区域乃至全球气候变化中发挥着关键作用,其形成演化对理解地球气候的历史至为重要。但目前西太平洋暖池的研究仍主要局限于晚中新世以来,其早期演化及与西边界流系的联系并不清楚。黑潮作为北太平洋副热带环流系统中的西边界流,是全球海洋中仅次于墨西哥湾流的第二大暖流。黑潮将西太平洋暖池的热量和水汽源源不断输送到北半球中纬度区域,不仅孕育了丰富的渔业资源,还塑造了东亚沿海地区温暖湿润的宜居气候环境。对马暖流是黑潮在东海东北部的主要分支,经对马海峡流入日本海。因此,地质时期对马暖流的活动可用于指示黑潮的演化乃至西太平洋暖池的发展,并进而揭示西边界流系与西太平洋暖池演化背后的驱动机制。 日本海处于北温带,对马暖流是现今流入日本海的唯一暖流,为该区域提供了重要的低纬热量及营养盐。硅藻是一种重要的浮游植物(少数种属固着底栖),其种属演化可以反映表层洋流的活动及海表温度的变化。日本海IODP U1430和U1425站位位于对马暖流活动路径上,其岩芯沉积物提供了重建对马暖流长期演化的重要材料。研究团队通过硅藻化石种属的统计分析及表层水古温度的指示,在古生物地层和磁性地层年代约束的基础上,重建了中中新世以来对马暖流活动的长期历史,进而综合已发表的放射虫、有孔虫等数据,揭示了中中新世以来对马暖流、黑潮流系及西太平洋暖池之间的相互联系。 结果显示,典型的热带-亚热带暖水硅藻种属丰度及硅藻古温度指标Td′存在显著的阶段性变化,指示了不同时期对马暖流活动强度的变化。15?12 Ma,虽然一度存在较高的巨大辐环藻丰度(温带种),但由于缺乏热带-亚热带的暖水硅藻化石组合,暗示此阶段可能缺乏对马暖流的活动。12?11 Ma,此时热带-亚热带暖水硅藻化石组合开始出现,指示了早期的对马暖流活动,这和印尼海道变窄、西太平洋暖池开始形成及黑潮发生强化的时间相一致。大约10.7?10 Ma时,由于全球海平面下降和对马海峡的关闭,导致了对马暖流的短暂中断与日本海南部硅藻丰度的显著下降。10?7 Ma的热带-亚热带暖水硅藻记录表明,该阶段仍存在相对明显的对马暖流活动。7?4 Ma,由于缺乏暖水硅藻化石,冷水种硅藻占据主导,表明对马暖流的活动可能一度中断,也对应了该时期黑潮强度的减弱及其路径的南移。直到4?3 Ma,典型热带-亚热带暖水硅藻化石记录的再次出现显示出对马暖流的再次活动,该阶段正对应于印尼海道的进一步变窄及巴拿马海道的最终关闭,其促使了现代西太平洋暖池及和现代黑潮的形成。而后3?2 Ma,由于北半球大冰期的加剧,对马暖流活动明显减弱。自中更新世气候转型以来,全球气候及海平面调控着黑潮的强度及对马海峡的开放程度,最终导致了日本海对马暖流的周期性强弱波动。 本研究基于日本海过去约1500万年以来的硅藻化石记录,重建了迄今最长的对马暖流活动历史,并探究了在西太平洋构造和全球气候变化共同驱动下,对马暖流、黑潮流系和西太平洋暖池之间的协同演变,为西太平洋古海洋和古气候演化提供了新的认识。 论文的第一作者为中国科学院海洋研究所博士研究生程宇龙,通讯作者为万世明研究员。本研究得到了国家自然科学基金、国家重点研发计划、中国科学院战略先导科技专项和泰山学者项目的支持。 论文信息: Yulong Cheng,Shiming Wan*,Rebecca S. Robinson,Kenji M. Matsuzaki,Debo Zhao,Xingyan Shen,Lina Zhai,Yi Tang,Huiling Liu,Anchun Li,2025. The history of the Tsushima Warm Current since the middle Miocene: Co-evolution with the Kuroshio Current and the Western Pacific Warm Pool. Earth and Planetary Science Letters 661: 119385,DOI: 10.1016/j.epsl.2025.119385 https://www.sciencedirect.com/science/article/abs/pii/S0012821X25001840
  • 《中国科学院海洋研究所研究揭示新生代喜马拉雅风化长期增强》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-02-02
    • 近日,国际综合性期刊Science Bulletin在线发表了中国科学院海洋研究所、法国巴黎萨克雷大学、法国岩石与地球化学国家研究中心、自然资源部第一海洋研究所等单位合作的最新研究成果“Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene”。研究团队基于印度洋北部浮游有孔虫钕同位素沉积记录,首次提供了晚始新世以来南亚风化长期增强的关键证据,揭示了喜马拉雅构造隆升及硅酸盐风化增强在新生代全球变冷中的重要驱动作用。 新生代地球气候经历了剧烈的变化:以整体变冷和南北两极相继发育大冰盖为基本特征,而大气CO2浓度的逐渐降低被认为是新生代长期变冷趋势的关键因素。但是,其降低的原因是由于构造活动引起的地球内部排气作用所主导,还是青藏高原隆升-风化/有机碳埋藏所驱动,迄今仍然充满争论。这些假说很大程度上基于数值模拟研究,缺乏可靠量化的新生代风化剥蚀记录,尤其缺少强烈影响全球风化通量平衡的喜马拉雅-青藏高原地区的长期风化记录。因此,建立新生代喜马拉雅长时间序列风化通量演变,揭示其与构造-气候变化的联系,是回答新生代气候变冷问题的关键。 恒河–雅鲁藏布江作为全球沉积物输送量最大的河流系统,新生代向孟加拉湾直接输送了来自喜马拉雅和青藏高原东南部的巨量陆源剥蚀物质。因此,研究人员聚焦于拥有独特地理位置的孟加拉湾,利用国际大洋钻探计划(ODP)758站岩芯中的浮游有孔虫放射性Nd同位素记录重建了晚始新世以来印度洋北部海水Nd同位素的长期演变,并将其与印度洋中部海水钕同位素记录进行对比而剔除印度洋水团影响,其二者差值(ΔεNd)的变化趋势被用以指示来自南亚的大陆风化输入对印度洋的贡献。 浮游有孔虫因其碳酸盐壳上的自生铁锰覆层可以吸附海水中的溶解态Nd,其εNd值代表了该区域底层海水的钕同位素组成。众多研究表明大陆边缘的溶解态Nd同位素特征与大陆剥蚀过程密切相关。孟加拉湾海水εNd值分布呈现出明显的南北梯度,这是由于来自喜马拉雅大河流域(如恒河–雅鲁藏布江河流系统)的陆源输入(εNd: -16至-10)与来自南大洋的水团输入(εNd: -9至-7)具有截然不同的Nd同位素特征所造成,表明了印度洋深层水团与南亚大陆风化输入的二端元混合。 基于此,研究人员提出了一个新的风化指标:ΔεNd(印度洋北部与中部海水εNd差值),利用二者εNd值的差异来指示喜马拉雅陆源Nd输入的相对贡献。第四纪记录表明,间冰期期间南亚季风降水的增多导致喜马拉雅区域更强的风化剥蚀,最终向孟加拉湾释放了更多的陆源Nd输入。因此,冰期-间冰期尺度ΔεNd指标的应用可以为构造时间尺度风化输入的解释提供潜在方法。 ODP 758站有孔虫εNd值呈现长期变负的趋势,且其与同岩芯碎屑组分εNd值和粘土矿物比值蒙脱石/(伊利石+绿泥石)显示出截然不同的长期变化,但在21 Ma、8 Ma、6 Ma和3 Ma显示出与陆源通量相同的增长趋势,这表明758站有孔虫Nd同位素组成不受沉积物物源和风化程度变化的影响,而主要反映了南亚陆源风化的长期输入演变。 研究人员将新指标ΔεNd应用在构造时间尺度上,利用ODP 758站有孔虫重建的晚始新世以来印度洋北部海水Nd同位素组成与铁锰结壳重建的印度洋中部海水Nd同位素记录进行对比,二者差值(ΔεNd)的变化趋势可指示来自南亚的大陆风化输入对印度洋的贡献。结果显示ΔεNd呈现长期增长的趋势,显示了晚新生代南亚风化的长期增强。其中,25-13 Ma和5-0 Ma南亚风化输入的快速增强时期分别对应了晚渐新世-中新世喜马拉雅造山带的快速隆起期和早上新世青藏高原东南部增长与北半球冰盖形成时期,这表明了南亚区域构造与风化的耦合演化。现代观测表明,喜马拉雅源-汇系统主要的河流流域硅酸盐风化每年共消耗~1.6×1012 mol的CO2,约占全球河流硅酸盐风化通量的30%。对比发现,在南亚大陆风化增强期间,大气CO2浓度也显示出整体下降的趋势;与此同时,ΔεNd长期增强与全球海水Li和Sr同位素指示的大陆风化趋势相似。这些证据均暗示喜马拉雅构造隆升引起的硅酸盐风化增强对于晚新生代全球变冷有着重要驱动作用。 本研究是迄今北印度洋地区最长且连续的有孔虫Nd同位素记录,对于理解喜马拉雅构造隆升、风化和新生代气候演化具有重要科学意义。 论文的第一作者为中国科学院海洋研究所博士后宋泽华,通讯作者为海洋所万世明研究员和巴黎萨克雷大学Christophe Colin教授。本研究得到了中国大洋发现计划(IODP-China)、国家自然科学基金、国家重点研发计划、泰山和鳌山学者项目等的支持。 论文信息:Song, Z., Wan, S.*, Colin, C.*, France-Lanord, C., Yu, Z., Dapoigny, A., Jin, H., Li, M., Zhang, J., Zhao, D., Shi, X., Li, A., 2023. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene. Science Bulletin 68, DOI: 10.1016/j.scib.2023.01.015. https://www.sciencedirect.com/science/article/abs/pii/S2095927323000312