《工业智造大时代,3D打印价值凸显放光彩》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-04-01
  • 2020年3月,工信部、科技部、教育部、国家标准化管理委员会等六部门印发《增材制造标准领航行动计划(2020-2022年)》,提出到2022年,立足国情、对接国际的增材制造新型标准体系基本建立。此外,推动2-3项我国优势增材制造技术和标准制定为国际标准,增材制造国际标准转化率达到90%,增材制造标准国际竞争力不断提升。

    国家层面政策的出台,从一定程度上反应出3D打印具有的战略性意义,也表明我国在推动3D打印产业发展方面的决心。从航天航空到普通的民用制造,近年来飞速发展的3D打印技术应用领域正在急速膨胀。尤其是在工业设计领域,3D打印技术突出的实体成型优势,正被多方看好。与此同时,3D打印的应用潜力正被设计师们深入挖掘。

    现代CNC数控机床加工技术,已经能够完成较复杂的零部件加工。当模型零件的复杂性达到一定程度时,该技术的局限性也就体现出来了。以3D打印技术为代表的增材制造技术,能够较好的弥补传统制造技术的不足。3D打印技术不但能够完整的构建具有复杂内部结构和功能的零部件,而且零部件内部结构越复杂,其制造速度就越快,成本优势也越突出。

    拿轴承保持架这个小小的部件来说,借助3D打印来制作它可以达到较好的效果。3D打印轴承保持架用于产品设计快速验证如今已较为常见。在设计3D打印保持架时,制作人员一般可以采用互锁结构,滚动体将保持架的每个部分固定在一起。这种涉及的目的,是使保持架圆周周围拥有更多的空间,轴承负载可以分布在更多数量的滚动体上,从而实现较佳的性能。

    从全局来看,3D打印在“工业智造”领域至少有三个层面的应用。在军事工业领域,比如飞机某些部件要求轻量化,用3D打印能一次成型。在普通工业领域,目前3D打印更多的用于新产品开发,模具制作的时间从两个月左右压缩到一周内。在个性化定制领域,3D打印将更好地满足不同用户的实际需求。

    在节省成本、提高构建精细度、提高产品制造效率的大趋势下,借助3D打印来制造产品将会更加注重材料、人员、设备等因素。随着3D打印技术的不断成熟,轴承、阀门、管件、减振器、粉碎设备等诸多工业器械都将可以借助3D打印制造完成,并让这些产品的质量得到有效保障。

    值得注意的是,目前3D打印相关软件、材料、工艺、技术等都被各国高度重视,国家间的跨国科研合作活动日益频繁。国内的工业级3D打印机品牌在设计端和国际软件公司合作,也加快了3D打印在多个领域的应用步伐。针对细分市场的行业需求,国内外企业也在积极开发相应的应用型软件。

    随着3D打印商用步伐的不断加快,一些问题也逐步显现出来。除了国内消费市场对3D打印的认识和应用不足之外,工业级3D打印设备的成本昂贵和维护费用高,使得许多中小企业望而却步。与此同时,虽然3D打印能够实现对复杂物体的制造,但打印出来的物体需要组装、材料不能自我修复、物体不能自适应变形等,这些也阻碍了3D打印技术价值的发挥。

    据统计数据显示,2019年中国3D打印市场规模约为33.6亿元。伴随着中国3D打印技术的不断进步,3D打印在航天航空、汽车制造等行业的需求将持续增加。预计2020年,中国3D打印市场规模将接近50亿元。

    各行业的迅速发展,倒逼3D打印加快进行技术革新。3D打印在技术革新方面包含三个层面的思想,即通用、实用和效用。相信经过不断改进,今后借助3D打印制造出来的各类产品,将在美观性、实用性等方面实现提升和优化。

相关报告
  • 《3D打印复合材料近期大事记》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-12
    • 3D打印市场正在蓬勃发展,其增长率达到两位数。数据表明,到2026年全球用于3D打印的复合材料收入将超过5亿美元,未来十年内复合材料将成为3D打印主要的市场机遇。 去年底,工信部工业文化发展中心增材制造(3D打印)研究院新材料研究所正式成立;今年,赢创推出用于更高温度3D打印的新型聚合物粉末;法国开发世界上首个3D打印空心螺旋桨片……最近这一时期,还有哪些与复材相关的3D打印大事件?我们一起来看一看吧。 阿科玛携3D打印最新协作创新成果 亮相2019 TCT亚洲展 日前,阿科玛亮相上海亚洲3D打印、增材制造展览会(TCT Asia),展示其在先进材料领域的最新协作创新成果。这些先进材料覆盖所有主要3D打印技术,包括选择性激光烧结、熔融沉积制造和光固化。 “阿科玛3D打印解决方案”平台持续为增材制造领域研发世界领先的先进材料解决方案组合,同时展示其在整个3D生态系统中的创新合作网络。 " “阿科玛在用于主流3D打印工艺上的旗舰先进材料已有盛名,但这个不断发展的市场需要的不仅仅是材料。在整个产业链中建立核心战略合作伙伴关系并加以利用至关重要。其中协同是关键所在。此次展会我们带来的数项产品技术,凸显了创新公司互相协同合作可取得的成果。”Guillaume de Crevoisier,阿科玛3D打印全球业务总监表示。 阿科玛将展示其与Autodesk和Farsoon在高性能选择性激光烧结(SLS)制造领域的协作成果。这项成果集合了Autodesk最高水平的制造软件和Farsoon生产的先进硬件,并充分利用阿科玛Rilsan®聚酰胺11粉末的卓越强度和耐用性。 阿科玛旗下沙多玛业务单元将推出多项开拓性解决方案,这些解决方案也是与下游客户共同开发的。新型液态树脂产品具有低刺激性和低气味的特点,适用于高性能牙科应用,而其他新型创新产品则专为鞋底设计,具有更好的弹性和韧性。 针对亚洲珠宝市场的特殊需求,阿科玛推出全新N3xtDimension®铸造树脂,具有出色的熔体,并且在铸造过程后残留量极少。 赢创推出用于更高温度3D打印的 新型聚合物粉末 特种化学品公司赢创正积极开拓极具吸引力的3D打印市场,并开发了一种新型聚合物粉末。作为旗下聚酰胺6系列的新产品,该粉末适用于更高温度范围的应用需求,进一步扩展了赢创粉末型3D打印技术高性能材料产品系列。 赢创的新型聚酰胺粉末具有高机械强度以及优异的耐化学性和耐温性。其热变形温度(HDT B)约为195°C。此外,粉末材料的低吸水率(低于3%)使其脱颖而出,这一特性对3D打印材料的可加工性和打印出的3D组件的尺寸稳定性具有积极影响。 “适用于单个打印机并且能够应用于更高温度范围的新型、即用型材料助推3D打印行业向批量生产迈进了一步。”专注选择性激光烧结(SLS)的TPM 3D中国技术公司创始人兼董事长Mark Zhao说道。“我们看到对可应用于更高温度范围的3D打印解决方案的需求十分强烈,例如汽车和电子行业。因此,我们很高兴与赢创一起推出新型温度稳定性材料。” 赢创聚酰胺6系列中的新型聚合物粉末具有近乎圆形的晶粒形状,优异的流动性和应用性能,适用于所有粉末型3D打印技术。赢创的专利工艺被用于其马尔工厂生产高温材料。 法国开发世界上首个 3D打印空心螺旋桨片 去年,法国国防承包商海军集团(Naval Group)与法国工程学院南特中央理工学院(Centrale Nantes)合作开发了全球第一片全尺寸3D打印军用螺旋桨,今年两家继续合作,开发了世界上第一台3D打印空心螺旋桨片。RAMSSES(可持续和高效船舶先进材料解决方案的实现和演示)螺旋桨项目是欧洲H2020(欧洲工业数字化技术、欧洲数据基础设施、5G、下一代互联网等技术研究领域面临的挑战和未来研发计划)的一部分,由欧盟委员会资助,旨在利用3D打印等新技术来减少碳排放对环境的影响,进行大型海军舰艇的制造和运营。 " 使用电弧增材制造技术 (Wire and Arc Additive Manufacture, WAAM) ,该集团计划3D打印直径达6米的舰艇螺旋桨。本次生产的测试件为原型比例的三分之一,重约300千克,制作时间不到100小时。分析表明,相比传统工艺,全尺寸3D打印桨片可以减轻40%的重量!不仅需要更少的材料,更降低了发动机的负荷,可进一步降低燃料消耗并因此降低船舶的环境影响。 此外,Sirehna(Centrale Nantes衍生公司和Naval集团的子公司)对螺旋桨片设计进行了改进,提高了效率和耐用性,同时减少了对海洋动物产生负面影响的辐射噪音和振动。 RAMSSES项目螺旋组件事业部经理Patrice Vinot表示:“虽然增材制造在工业上越来越普遍,但复杂部件的编程和设计,如船用螺旋桨叶片,对我们海军集团的的团队和合作伙伴来说是一个巨大的挑战,这个新案例研究揭示了3D打印工艺过程的潜力,这意味着预计未来的螺旋桨将具有无与伦比的性能。参与RAMSSES等项目并协调我们的学术和行业合作伙伴网络,将使我们能够长期将3D打印引入造船厂。” 南特中央理工学院快速制造平台负责人,增材制造国际专家Jean-YvesHascoët教授解释说:“在快速制造平台上,过去35年来一直在开发增材制造。所有这些年的研究都是通过像RAMSSES这样的项目实现的,促使我们的技术真正转移到工业环境中。海军行业正在缓慢但肯定地采用3D打印,以确保未来的‘顺利航行’。” EAD工业级连续光纤CFAM Prime 3D打印机 入围JEC创新大奖 CFAM Prime 3D打印机是一种新的3D打印技术,它将颗粒挤压与预浸渍纤维细丝相结合,打印纤维增强热塑性组件。挤出机设计过程几乎所有的热塑性塑料(最高温度400℃)。 测试了各种热塑性塑料,如PETG、PP、PPS、ABS、PC、PB和PEEK,其中一些颗粒已经含有一定比例的短纤维。连续纤维预先浸渍了用于该应用的热塑性塑料。因此,CEAD生产自己的连续纤维长丝浸渍所需的热塑性塑料,很像目前使用的UD带。该打印头可将熔融的热塑性塑料与连续预浸渍纤维相结合,打印复合材料。 " 该程序是独一无二的,并获得了专利。这台机器不需要操作员也能运转24小时。全封闭,有闭环温度控制系统和专用冷却系统。这使得CFAM Prime成为一台专用的生产机器,并对打印对象的质量进行完全控制。 与传统的生产方法相比,使用CFAM给了设计者更多的设计自由。复杂的内部通道,复杂的曲率和安装和装配功能可以集成到一个设计。允许4 x 2x1.5m的体积,使得CFAM Prime对于低批量的大型复杂产品非常有利。该方法减少了生产步骤。在此过程中省去了昂贵的模具,并且由于该过程主要是自动化的,因此减少了人工成本。由于减少了工艺步骤,从而缩短了大型复杂产品的交货期。 这一创新被选为2019年JEC创新大奖3D打印类的入围作品。获奖名单将于2019年3月13日下午4时30分在JEC World 2019大会上公布。 Stratasys复合材料 亮相法国JEC 在即将举办的JEC展会上,Stratasys将展示其FDM和PolyJet技术在整个产品开发过程中的通用性,从全功能原型到工具应用和最终生产部件。参观者将能够看到来自不同行业的公司在生产操作中实施增材制造时所能享受的显著时间和成本效益。 Stratasys对高温材料的开发,以及FDM生产3D打印机产量的提高,使其能够在数小时或数天内制造出复杂的复合叠层,而不是像传统制造那样需要数周或数月的时间。 " 作为JEC World在“创新行星”领域的应用展示计划的一部分,Stratasys将展示一款Santa Cruz自行车,以及使用3D打印工具生产的许多碳纤维部件。通过使用Stratasys的FDM 3D打印技术,该公司能够比以往任何时候都更快地生产出功能完备的原型机,并以更快的速度迭代更多的设计,这大大简化了其整体设计流程。此外,该公司通过按需3D打印高性能复合材料工具,克服了传统工具在低批量复合产品生产中的局限性,从而大大加快了产品的交付时间,成本也大大降低。 Stratasys还展示FDM尼龙12CF令人印象深刻的机械性能如何使工程师能够探索从传统金属零件到3D打印塑料复合材料的过渡。这种填充碳纤维的热塑性塑料含有35%的切碎的碳纤维,它的强度足以取代金属,使设计师能够开发出更轻的功能设计。FDM尼龙12CF的高刚度重量比非常适合汽车、航空航天、休闲用品和工业制造部门的功能性能测试需求。 Fortify和DSM合作开发用于 3D打印的高性能复合材料 总部位于波士顿的先进制造公司Fortify与营养、健康和可持续生活的全球目标主导科学公司DSM宣布,他们将开发用于结构件3D打印的高性能复合材料。 此次合作将Fortify的数字复合材料制造(DCM)平台和光纤加工专业知识与帝斯曼在3D打印树脂和配方开发方面的应用知识相结合。他们将共同开发尖端的高性能复合材料,通过Fortify硬件进行分销。通过为3D打印部件带来强大的机械和温度特性,这些材料非常适用于众多市场中的各种应用:汽车、航空航天、电子、快速模具、夹具和夹具。 帝斯曼增材制造副总裁Hugo da Silva表示:“在帝斯曼增材制造业,我们相信与行业合作伙伴的合作是推动行业发展的关键,与Fortify合作,使我们能够开发用于DLP技术的高性能复合材料,使该技术适用于要求苛刻的应用中的功能部件。” 通过利用DCM,Fortify在硬件和纤维加工方面的专业知识和专业知识将立即提高DSM树脂的机械性能。此外,Fortify和DCM平台将成为帝斯曼3D打印材料的分销渠道。 大多数3D打印平台都是关闭的,将树脂的使用限制在3D打印机公司自己生产的树脂上。通过Fortify光纤平台,Fortify邀请供应商与Fortify材料科学家和工程师一起开发高性能树脂。合作伙伴可以正确利用复合材料的强大功能,而无需构建Fortify提供的内部专业知识。(来源:中国纤维复材网) 复合材料3D打印传感器 可检测水含量 由马德里自治大学(UAM)的Pilar Amo-Ochoa带领的西班牙-以色列科学家团队开发了一种多功能3D打印塑料复合传感器,能够检测微量水。 3D打印的材料是无毒的,在潮湿条件下颜色从紫色变为蓝色。 科学家Michael Wharmby解释说:“了解特定环境或材料中存在多少水是很重要的,例如,如果油中含有过多的水,则可能无法很好地润滑机器,如果燃油中含有过多的水,则可能无法正常燃烧。” 科学家的新型传感器材料是一种所谓的铜基配位聚合物,一种水分子与中心铜原子结合的化合物。他们使用Deutsches Elektronen-Synchrotron(DESY)光源PETRA III来分析加热时材料的变化。“将化合物加热到60摄氏度时,颜色从蓝色变为紫色,”Pilar Amo-Ochoa报道。将材料加热至60℃,除去与铜原子结合的水分子,最终引起颜色变化。 “这种变化可以通过将其置于空气中,将其置于水中,或将其置于含有微量水的溶剂中来逆转。” 在理解了这一点之后,我们能够对这种变化的物理模型进行建模,”马德里材料科学研究所(ICMM-CSIC)的JoséIgnacioMartínez解释道。然后科学家们将铜化合物混合成3D打印墨水,并在几种不同的形状下打印传感器,这些传感器在空气和水中进行测试。这些测试表明,3D打印物体对水的存在比对化合物本身更敏感。在溶剂中,打印传感器可在不到两分钟的时间内检测到0.3%至4%的水。 如果在无水溶剂中干燥或通过加热干燥,则材料变回紫色。详细的调查表明,即使在许多加热循环中材料也是稳定的,并且铜化合物均匀地分布在整个打印传感器中。此外,该材料在空气中在至少一年内是稳定的,并且在生物相关的pH范围内也是5至7。 “这项工作展示了第一个由无孔配位聚合物制成的3D打印复合材料,”共同作者马德里自治大学的FélixZamora说。“在功能性3D打印领域,它打开了使用这一大系列化合物的大门,这些化合物易于合成并具有有趣的磁性,导电性和光学性质。” 正如科学家在“Advanced Functional Materials”杂志上所写的那样,这一发展为新一代3D可打印功能材料的产生打开了大门。
  • 《3D打印重塑“快速原型” 或将彻底改变制造业格局》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-09-22
    • 随着最近行业和技术的进步,创新者们正在利用增材制造(AM)实现库存成本的大幅削减。企业在如何看待制造愿景的重构方面,发生了巨大的变化。增材制造在帮助全球的原始设备制造商(OEM)迎合世界各地不同行业和市场需求的同时,已将其范围扩展到快速原型制作之外,并且系统集成商也在致力于帮助工程、自动化和系统的集成。这种转变归因于增材制造具有制造复杂设计零件的卓越能力,降低制造材料损失的成本,减少因兼容性受限而进行的装配以及对机械和配件的需求。 快速原型向3D打印的发展以及相关创新正在扩展工业模式,其范围已超出人们的想象。如今,汽车、航空航天、建筑、消费产品、医疗保健、食品和制造业等工业领域,对增材制造及其应用的需求越来越大。 令人难以置信的是,自1981年日本的Hideo Kodama博士首次发表他的功能性快速原型系统报告并申请了专利以来,“快速原型”已经存在了35多年了。 从那时起,快速原型制作已成为第四次工业革命(工业4.0)中最大的技术颠覆者之一。 根据市场咨询公司Frost & Sullivan的一份研究报告显示,增材制造从2015年到2025年的复合年增长率(CAGR)有望达到15%。报告和数据预测,增材制造的市场价值将从2018年的80亿美元增长到2026年的230亿美元以上。一家总部位于美国加州估值25亿美元的初创企业,创建了世界上第一款通过订阅模式部署的增材制造硬件,以帮助用户更加轻松地将3D打印解决方案应用到数字化制造中。 降低更多成本 原型设计并不是一种新出现的技术观念,它最初的愿景是最大程度地减少制造生态系统和供应链成本。随着新技术对业务转型的干扰,制造业的未来依赖于更多元化的原型应用专家网络。这样做的目的是节省更多时间和资源,并减少误差和缺陷。这一愿景促使全球企业专注于增材制造的概念。 美国运动服装巨头耐克的未来愿景是将设计卖给客户,然后客户可以自行在家3D打印鞋子。耐克及其一些竞争对手,对鞋类领域增材制造的投资增加了一倍,这是面向未来的举措,可以通过消除人工成本,加快产品上市速度来提高产量。鞋的性能将由于使用了更轻、更透气的材料和更少的摩擦阻力而得到提高。唯一的缺点是取决于执行的准确性,这可能会增加成本,重点是精心的设计。 向增材制造的转变 尽管多年以来,快速原型制作已成为主流的方法,但它依赖于传统的制造工具和程序、生产准备情况以及供应商支持。因此,这是一个耗时且昂贵的过程。相比之下,增材制造则更侧重于原材料的采购和生产制造的设计方面。3D打印机完成设计的物理过程以创建原型,这样的自动化过程可以缩短周转时间。 系统集成商也推动了这些自动化过程。对于敏捷的增材制造流程,自动化执行需要集成命令。系统集成商调节增材制造的各个组件,并自动执行原型从设计到交付的过程。 加速发展的增材制造 在全球工业化的各个阶段,制造业一直是进步的动力。一般来说,产品的生命周期包括导入、成长、成熟和衰退4个阶段。像大多数产品一样,增材制造在“导入”阶段也受到生产障碍、专利限制以及机器成本高昂的困扰。这导致行业初期的利润低、市场渗透率低、成本高和质量低。 增材制造市场目前处于“成长”阶段,已获得各行业用户的好评。在开箱即用的思维方式时代,增材制造企业正在寻求降低成本,同时为用户提供性能卓越的解决方案。 尽管传统的制造方法,需要经过一段时间才能被替换,但是这个趋势已经势不可挡。增材制造是出于加快设计可视化的需要而诞生的。由于原型制作花费很长时间,业界寻求一种可以减少原型开发时间的方法,同时将更多的时间投入到复杂的设计上。设计思维和可视化方面的技术创新,减少了对供应商和支持生态系统的依赖。由于投入到设计和组件试验中的时间多了,精巧度增加了,周转时间也减少了。 增材制造的另一个值得注意的方面,是它主要用于开发复杂的设备组件。例如,在航空航天领域,增材制造被用于开发燃料喷嘴之类的组件。这些是关键部件,但没有大规模生产。在增材制造的帮助下,设计这些前沿的复杂组件变得更轻松,不但简化了设计,还减轻了这些零件的重量。所有这些都可以提高性能效率并减少库存。航空航天领域的一些领先企业,通过使用增材制造技术使库存成本降低了95%以上。 增材制造的关键领域包括3D打印、快速成型和直接数字制造(DDM)。这些概念在包容性和协作性思想中蓬勃发展。对于航空航天和汽车行业来说,增材制造主要是为了优化设计效率和减少生产时间,而医疗设备行业却从增材制造的定制功能中受益匪浅。 根据Frost&Sullivan 2016年的报告,到2025年,汽车、航空航天和医疗设备行业,将占据3D打印市场的51%。从地理范围看,在2015-2025年期间,亚太地区(APAC)增材制造市场的复合年增长率为18.4%。中国将占亚太地区市场的70%。 工程应用的新范式 2017年,迈凯轮车队与专门从事3D打印的Stratasys公司合作,为MCL32生产可用于比赛的零件,以参加2017年国际汽联一级方程式世界锦标赛。合作背后的想法是“轻量化”或拓扑优化,Stratasys公司通过这种方式为赛车队成功生产出轻巧但耐用的零件。 在另一个案例中,全球医疗设备制造Stryker公司坚定地致力于其3D打印和制造医疗产品的承诺。一个价值929万美元的即时(JIT)植入物项目可实现为癌症患者生产定制的骨植入物。 得益于增材制造技术的发展,制造已可以完成具有复杂几何形状和极少浪费的独特工艺。将精力和专业知识集中在此类智能机器上进行工程设计,将进一步改变制造业。增材制造成功地为各领域生产了各种原型设备,未来,其规则或将彻底改变制造业格局。 增材制造的独特优势消除了供应链中的许多中间步骤。越来越多地采用增材制造,将进一步改变其应用领域和行业的发展。