《探索 | 研究发展出单层二硫化钼低功耗柔性集成电路》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-07-05
  • 柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟道材料。然而,推动二维半导体柔性集成电路走向实际应用并形成竞争力,降低器件功耗、同时保持器件性能是关键技术挑战之一。

    中国科学院物理研究所/北京凝聚态物理国家研究中心研究员张广宇课题组器件研究方向近年来聚焦于二维半导体,在高质量二维半导体晶圆制备、柔性薄膜晶体管器件和集成电路等方向取得了重要进展。近年来的代表性工作包括实现百微米以上大晶畴及高定向的单层二硫化钼4英寸晶圆,进而利用逐层外延实现了层数控制的多层二硫化钼4英寸晶圆;率先实现单层二硫化钼柔性晶体管和逻辑门电路的大面积集成;展示单层二硫化钼柔性环振电路的人工视网膜应用,模拟人眼感光后电脉冲信号产生、传导和处理的功能。

    近期,该课题组博士研究生汤建、田金朋等发展了一种金属埋栅结合超薄栅介质层沉积工艺(图1),将高介电常数HfO2栅介质层厚度缩减至5 nm,对应等效氧化物厚度(EOT)降低至1 nm。所制备的硬衬底上的场效应晶体管器件操作电压可以等比例缩放至3 V以内,亚阈值摆幅达到75 mV/dec,接近室温极限60 mV/dec。同时,研究通过优化金属沉积工艺,使得金属电极与二硫化钼之间无损伤接触,避免费米能级钉扎,使接触电阻降低至Rc<600 Ω·μm,有效地将沟道长度为50 nm的场效应器件的电流密度提升至0.936 mA/μm @Vds=1.5 V。在此基础上,科研人员将该工艺应用于柔性器件的制作。四英寸晶圆尺度下柔性二硫化钼场效应晶体管阵列及集成电路表现出优异的均匀性以及器件性能保持性(图2)。该工作对随机选取500个场效应器件进行测试发现,器件兼具高良率(> 96%)、高性能(平均迁移率~70 cm2 · V-1 · s-1)以及均匀的阈值电压分布(0.96 ± 0.4 V)。当操作电压在降低到0.5 V以下时,反相器依然具备大噪音容限和高增益、器件单元功耗低至10.3 pW·μm-1;各种逻辑门电路也能够保持正确的布尔运算和稳定的输出(图3);11阶环振电路可以稳定地输出正弦信号,一直到操作电压降低到0.3 V以下(图4)。

    该工作展示了单层二硫化钼柔性集成电路可以兼具高性能和低功耗,为二维半导体基集成电路的发展走向实际应用提供了技术铺垫。相关结果近期以Low power flexible monolayer MoS2 integrated circuits为题,发表在《自然-通讯》(Nature Communications 2023; 14, 3633)上。研究工作得到国家重点研发计划、国家自然科学基金和中国科学院战略性先导科技专项(B类)等的支持。该研究由物理所与松山湖材料实验室联合完成。

    图1. 采用埋栅工艺制备的高性能二硫化钼场效应器件

    图2. 四英寸柔性二硫化钼场效应器件的制备、电学测量和均匀性表征

    图3. 具有低操作电压的逻辑门电路的大面积制造与电学表征

    图4. 具有低操作电压的环形振荡器的电学测量表征

相关报告
  • 《清华大学任天令教授团队首次研制出双模式晶圆级二维二硫化钼导电细丝晶体管》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-02-20
    • 2月4日,清华大学微纳电子学系任天令教授团队在《美国化学学会纳米》 (ACS Nano)在线发表了题为《超低亚阈值摆幅,超高开关比双模式二硫化钼导电细丝晶体管》(“Two-Mode MoS2 Filament Transistor with Extremely Low Subthreshold Swing and Record High On/Off Ratio”)的研究论文,首次在埋栅双层二硫化钼(MoS2)晶体管沟道和漏极之间插入阻变层,在不同的电压条件下分别实现了超低亚阈值摆幅(模式一)和拥有超高开关比的准零维接触(模式二)。 现如今,随着摩尔定律发展,单片集成的晶体管数量越来越多,由此来带的小尺寸效应等问题更加突显,如何进一步降低晶体管亚阈值斜率摆幅来实现低功耗的亚阈值区1/0数字信号切换,增大单个晶体管开关比和开态电流来实现更好的关断特性和驱动能力,成为了研究的热点和难点。近年来新型晶体管如隧穿晶体管和负电容晶体管被研制出来以解决这一难题。与上述两类晶体管不同,本工作采用了全新的结构,创造性结合了埋栅双层二硫化钼晶体管和导电桥式随机存取存储器(CBRAM)阻变层,构建了双模式二硫化钼“导电细丝晶体管”,该晶体管可以工作在超低亚阈值斜率(模式一)和超高晶体管电流开关比(模式二)两种模式中,为上述问题提供了新的解决方案。 图 1. (a)二硫化钼导电细丝晶体管模式一运行示意图;(b)晶圆级导电细丝晶体管阵列;(c)导电细丝晶体管的扫描电子显微镜图;(d)模式一下晶体管源漏电流和栅极电压在不同漏极偏置下的传输曲线。 在模式一中,通过施加不同极性的漏极偏置和不同方向的栅极扫描电压,调控漏极和沟道间阻变层电场大小和方向,使得阻变层中的导电细丝导通和断裂。在其导通和断裂的瞬间,沟道电流发生突变从而实现超低的亚阈值斜率(图1a)。利用化学气相淀积生长的大面积二硫化钼薄膜使得该器件可达到晶圆级制备规模 (图1b)。其器件结构如图1c所示,在该器件中获得了2.26 mV/dec的超低亚阈值斜率(图1d)。 图 2. (a)二硫化钼导电细丝晶体管模式II运行示意图;(b)模式二下该晶体管的栅控电流传输曲线和栅极漏电流;(c)准零维结构晶体管(模式二)和对照组传统三维接触的开态电流对比。 在模式二中,由于上述阻变层形成导电细丝的直径在亚10纳米,从而在漏电极和沟道间形成准零维接触,大大降低传统接触中电子散射现象(图2a),实现超高栅控沟道电流的开关比 (2.6×109,图2b),相比于传统电极接触二硫化钼晶体管对照组,开态电流提高了约50倍(图2c)。此外,埋栅结构的使用相较于传统背栅晶体管能进一步地增强栅控能力。同时相比于顶栅晶体管而言,绕过了在二维薄膜上生长介质材料不均匀的难题。 微纳电子系博士生王雪峰和助理教授田禾为论文共同第一作者,任天令教授及其团队教师为论文通讯作者。 任天令教授长期致力于二维材料基础研究和实用化应用的探索,尤其关注研究将二维材料与传统存储与传感器件相结合,已获得了多项创新成果,如低功耗单层石墨烯阻变存储器、石墨烯柔性阻变存储器、阻变窗口可调双层石墨烯阻变存储器等,相关成果曾多次发表于《自然通讯》(Nature Communications)、《先进材料》(Advanced Materials)、《纳米快报》(Nano Letters)、《美国化学学会纳米》(ACS Nano)、国际电子器件大会(IEDM)等。
  • 《二硫化钼摩擦离子电子学晶体管研究获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-04
    • 两种不同材料接触分离可产生静电荷并引发一个摩擦静电场,该摩擦电场可以驱动自由电子在外部负载流通,得到脉冲输出信号。一方面,摩擦纳米发电机 (TENG) 就是利用了这种脉冲信号实现了将外部环境机械能转换成电能,近期在许多领域实现了许多突破性进展,包括从多种机械运动获取能源、自驱动机械感应系统、高灵敏质谱分析以及常压下机械触发的等离子体等。另一方面,当 TENG 产生的静电场与电容性器件耦合时 ( 例如,场效应晶体管 ) ,半导体沟道中载流子的传输特性可以被摩擦电势有效调制,也就是摩擦电子学晶体管( tribotronic transistor )。为了开发更高性能主动式摩擦电子学晶体管,针对 TENG 与半导体器件耦合的基础物性研究和相关工艺工程迫切地需要更深入的探索。利用双栅结构电容耦合,使二硫化钼 (MoS 2 ) 摩擦电子学晶体管电流开关比超过六个数量级 (10 6 ) 。平面设计以及利用直接接触模式,同样简化了石墨烯摩擦电子学机械传感器件。然而,鉴于之前复杂的加工工艺和较为普通的电学性能,摩擦电子学仍有巨大的研究空间。 近日,中国科学院北京纳米能源与系统研究所孙其君和王中林研究团队基于摩擦电子学的原理,制备了一种新型的二硫化钼摩擦离子电子学晶体管 (triboiontronic transistor) ,该器件通过工作在接触分离模式下的 TENG 产生的摩擦电势与离子调控的二硫化钼晶体管耦合,连接了摩擦电势调制特性以及离子调控的半导体特性。摩擦电势在离子凝胶和二硫化钼半导体界面处可诱导形成超高的双电层电容,可高效率调制沟道中载流子传输性能。不需要额外栅压,二硫化钼摩擦离子电子学晶体管可主动式操控,器件表现低的阈值 (75 um) 和陡峭的开关特性 (20 um/dec) 。通过预设耦合与晶体管的摩擦电势的初始值,摩擦离子电子学晶体管可以操作在两个工作模式下,增强模式和耗尽模式,实现更高的电流开关比 (10 7 ) 以及超低的关态电流 (0.1 pA) 。文章展示了二硫化钼摩擦离子电子学反相器,反相器对应增益 (8.3 V/mm) ,并且具有较低的功耗以及优异的稳定性。这项工作展现了一个通过外部机械指令来高效率调制二维材料半导体器件以及逻辑电路的低功耗主动式以及普适的方法,在人机交互、电子皮肤、智能传感以及其他可穿戴器件等领域有巨大的应用前景。该研究成果以 Triboiontronic Transistor of MoS 2 为题发表于近期的《先进材料》( Adv. Mater ., DOI: 10.1002/adma.201806905)上 。 图: (a-c) 二硫化钼摩擦离子电子学晶体管的工作机制以及三个状态下的能带示意图 ( 增强模式,平带,耗尽模式 ) ; (d) 两个工作模式下的二硫化钼摩擦离子电子学晶体管输出特性曲线以及对应的转移特性曲线; (e) 电流开关比超过七个数量级; (f) 对应肖特基势垒高度随摩擦距离的变化,插图是对应能带解释; (g-i) 二硫化钼摩擦离子电子学晶体管实时测试性能。