《Nature Energy:可见光催化生物质低耗高效生产氢与柴油》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-06-25
  • 生物质是地球上储量最大、年产量最高的可持续碳资源。生物质的解聚有望替代化石资源为人类社会提供可持续的化学品和能源品。木质纤维素在生物质中的比例最大,其组成成分主要包括纤维素、半纤维素和木质素。目前,木质纤维素的解聚并转化为化学品或能源品受限于难以控制的选择性、低收率以及严重的再聚等问题。较高的反应温度是引起生物质分子再聚的一个原因;此外,木质纤维素的氧含量很高,这就要求木质纤维素转化成含氧精细化学品或利用木质纤维素或水 中的氢来实现木质纤维素的转化。   

    在光照下,半导体表面能够同时产生氧化性 和还原性强的产物,可以分别在常温下引发氧化和还原反应。采用光催化的方法来解聚 / 转化木质纤维素将会避免剧烈的反应条件(例如高温)引起的再聚问题。温和的反应条件也可以减少副反应的速率,更易于控制产物选择性。此外,光催化反应可以实现爬坡反应,因而有望实现用水 供氢来还原木质纤维素或在解聚 / 转化木质纤维素的同时产氢。   

    近日, 中国科学院大连化学物理研究所王峰研究员团队开发了新型光催化剂Ru-ZnIn 2 S 4 ,能够在可见光下直接高活性催化生物质衍生的分子,同时产生氢气 和柴油前驱体 。成果发表在最新出版的《自然 - 能源》(IF46.859) 。

    2,5 - 二甲基呋喃( 2,5 - DMF )和 2 - 甲基 呋喃( 2 - MF )可以分别选择性地从含有己聚糖和戊聚糖的木质纤维素获得,它们是非常有竞争力的生产柴油前驱体的原料。研究人员发现, 2,5 - DMF 和 2 - MF(单独反应 或混合反应 )都可以被无氧脱氢偶联, 产生柴油组分碳数的含氧化合物 。 加氢脱氧反应后, 得到了包含很大比例支链烷烃 ( ~ 32%)的 组分非常 丰富 的烷烃混合物。研究证实,Ru的掺杂提高了 ZnIn 2 S 4 的电荷分离效率,进而促进C-H键的活化而同时得到氢气和柴油前驱体。这项工作引入了一种利用太阳能和地球表面存在的可持续碳源来产生清洁能源的新方法。

相关报告
  • 《打通“地沟油”转化生物柴油技术通路》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-12-12
    • 近年来,生物柴油成为国际新能源研究的热点。不过,生物柴油也曾让清华大学化工系教授刘德华一度非常失望,他在12月1日于北京举办的2018年中国清洁能源行业年会生物柴油论坛上坦言,“任何一个新能源领域的发展,离开政府强有力的政策支持,都做不起来。”   让刘德华重拾信心的是近年来相关政策的不断出台,尤其是2017年出台的国家标准《B5柴油》(GB 25199-2017)是我国第一代生物柴油的国家标准,也是我国第一个生物柴油标准,为我国生物柴油的大规模发展和利用开启了政策之门。   而刘德华带领的酶法生物柴油研究及产业化创新团队也为生物柴油的制备贡献了新的方法和技术。经过十多年的研究,其团队研发了酶促转化制备生物柴油关键技术和装备。该项技术主要是将潲水油、地沟油等非食用油脂原料转化成生物柴油能源和生物基础材料,与传统工艺相比具有绿色环保、节约能源、转化率高等特点。目前相关技术和装备已显示出良好的产业化前景。   酶法工艺凸显   “生物柴油是指由动植物油脂(大豆油、菜籽油、废食用油等)与一些短链的醇(常用甲醇)在催化剂的作用下发生转酶反应后,生成的长链脂肪酸酯类物质。”刘德华给出了生物柴油的化学定义,“从制备方法来看,生物柴油的生产方法可分为化学法、超临界法和生物酶法。”   均向化学催化法制备生物柴油是最广泛采用的工业化生产工艺,即利用动植物油脂与甲醇在均相酸或碱催化剂作用下发生酯化或转酯化反应,生成脂肪酸甲酯(生物柴油)。   “虽然技术成熟,但局限性同样很明显。”刘德华表示,首先生产过程污染严重,反应过程会有废酸、废碱排放,生产过程需要大量水来清洗;另外,使用碱性催化剂时对原料油要求苛刻,油脂里的游离脂肪酸及水含量必须非常低,原料油预处理工艺复杂。   超临界法制备生物柴油则较为绿色,过程中无需溶剂和催化剂,后续分离和纯化工艺简单,对油脂原料的品质要求也并不严格,并且反应速率快、转化率高、无污染。“但是超临界状态的实现条件较为苛刻,对设备制作及运行要求很高,投资及运行成本高。”刘德华指出。   他介绍,生物酶法制备生物柴油具有反应条件温和、对原料油品质要求较低、无需复杂的预处理工艺、产品分离回收简单、无污染排放等优点。   技术之外,原料是生物柴油发展的另一瓶颈。“整合地沟油行业,打通上下游产业链,使地沟油得到循环利用,用地沟油生产生物柴油,不仅给地沟油找到了一个容易监管的安全出路,在保障食品安全的同时,助力京津冀大气污染治理,还解决了生物柴油厂无米下锅的问题,一举三得。”北京清洁燃料行业协会副会长、本次论坛组织者宋建国表示。   攻克技术瓶颈   虽然生物酶法合成生物柴油具有反应条件温和、醇用量小、无污染物排放等优点,但传统酶法工艺中反应物甲醇容易导致酶失活、副产物甘油影响酶反应活性及稳定性,从而使得酶的使用寿命太短,导致酶的使用成本过高,经济上难以与化学方法相竞争,这也是实现酶法产业化生产生物柴油的关键瓶颈。   清华大学发明的新工艺可以完全解除甲醇和甘油对脂肪酶的抑制,成百倍地延长酶的使用寿命。   针对传统酶法工艺瓶颈问题,清华课题组提出利用新型有机介质体系进行酶促油脂原料和甲醇进行生物柴油制备的新工艺,解除了传统工艺中反应物甲醇及副产物甘油对酶反应活性及稳定性的负面影响,大大延长了酶的使用寿命。另外,在该新工艺中,脂肪酶不需任何处理就可直接连续循环使用,并且表现出相当好的操作稳定性。   刘德华同时指出,生物柴油产业的规模化发展,还将带来一个严峻的问题,那就是副产物甘油的出路。清华大学已经成功解决了副产物甘油的深度加工问题,率先提出利用生物转化的方法直接将生物柴油副产物甘油(不需经过任何处理)发酵生产高附加值产品1,3—丙二醇(PDO),进而实现了两个生物转化过程的高效耦合,显著提升了整个过程的综合经济效益。   刘德华坦言,下一步,他将寻求有实力有远见的企业合作,“生物柴油潜力很大,如果有企业与我合作,整个生产线上所有的设备都是可以国产的”。   推动地沟油循环利用   一项产业中的技术总是百花齐放,酶法新工艺固然有进步性,但传统工艺历经多年的研究和改进,更趋完善和成熟。   唐山金利海生物柴油股份有限公司采用的就是化学法。“技术经过更新换代,生物柴油转化率不断提高,目前正常运行的生产线,不仅产量达到设计能力,综合能耗远低于行业标准,而且所用原料除水杂外全部转化为产品。”该公司董事长李艾军表示。另外,检测技术和清洁生产技术的创新,也为唐山金利海被确定为全国循环经济标准化试点示范单位加分。   河北金谷再生资源开发有限公司采用的高温中酯化工艺则属于超临界法。“采用这种工艺,河北金谷实现了连续自动化生产,原料适应广、运行稳定、收率提高、产品质量稳定,且不造成二次污染。”该公司总经理赵汇行表示。   对地沟油收运过程做过详细调研的刘德华认为,“地沟油做生物柴油不是技术的问题,而是政策问题。”   “尽管推广使用生物柴油意义重大,但仍然存在诸多问题,尤其是缺乏国家层面的协调机制。”原国家能源局副局长吴吟建议,应尽快制订生物柴油的计划,建立生物柴油原料供应保障机制,畅通销售渠道,加快推广应用试点示范建设,完善生物柴油的产业扶持政策。   北京市政府参事王维平表示,京津冀废弃油脂、生物柴油行业借助现有资源,统筹布局,充分发挥社会组织作用,设立产业联盟和产业基金,建设上下游企业产业链,整合行业资源,推动相关政策落地,地沟油循环利用治雾霾的愿景就有可能实现。   宋建国强调,从地沟油到生物柴油,还需做到六个统筹:统筹生物柴油规划布局、统筹使用废弃油脂、统筹技术规范标准、统筹市场机制、统筹财税政策、统筹监管。
  • 《黑磷/钒酸铋Z型2D异质结可见光催化分解水》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-25
    • 超薄二维(2D)纳米材料是材料和纳米科学领域一颗冉冉升起的新星,在过去的十年,其在电子、催化、能量转换等领域都取得了极大的突破。作为2D家族的新成员之一,超薄黑磷(BP)由于其独特的物理化学、光学以及电子特性,在能源、生物和环境等相关领域迅速生根发芽,得到应用。黑磷是一种半导体,其半导体性质使得黑磷在光催化领域中的应用前景良好。 成果简介 近日,日本大阪大学Tetsuro Majima教授、Mamoru Fujitsuka教授(共同通讯作者)等设计了基于黑磷(BP)/钒酸铋(BiVO4)的二维(2D)异质结构的新型人工Z型光催化体系,并在Angew. Chem. Int. Ed.上发表了题为“Z-Scheme Photocatalytic Water Splitting on a 2D Heterostructure of Black Phosphorus/Bismuth Vanadate Using Visible Light”的文章。该论文被选为重点(VIP)论文。高效的电荷分离使得BP还原水和BiVO4氧化水成为可能。λ≥420 nm时BP /BiVO4最优制氢析氧速率分别为160和102 μmol·g-1·h-1,可以不使用任何牺牲剂或外加偏压。 小结 研究人员首次构筑了BP和BiVO4的2D异质结构,并将其作为高效Z型光催化剂分解水制氢气和氧气。在没有任何牺牲试剂和外加偏压的情况下,使用BP/BiVO4异质结构,可见光辐照下可观察到纯水分解产生氢气和氧气。其能带结构的交错排列有助于电荷分离,使得水的还原和氧化分别发生于黑磷和BiVO4。上述结果显示使用Z型结构设计将BP和BiVO4的优势相结合在全分解水领域前景良好。