《过氧化氢通过氧化还原传感器RPSA调节细胞粘附》

  • 来源专题:重大新药创制—内分泌代谢
  • 编译者: 李永洁2
  • 发布时间:2015-12-03
  • 成为转移性肿瘤,肿瘤细胞必须获得新的粘附属性,允许迁移到周围的结缔组织,跨内皮细胞轮回达到血流中并转移,粘附的部位到内皮细胞和轮回拓殖一个新组织。过氧化氢(H2O2)是肿瘤发展高度相关的氧化还原信号传导分子。然而,过氧化氢在肿瘤细胞中调控的分子机制仍知之甚少。过氧化氢的靶蛋白对肿瘤细胞的识别和其在肿瘤细胞的粘附作用的认识对新型氧化还原为基础的癌症治疗的发展是至关重要的。在本文中,我们确定了核糖体蛋白SA(RPSA)作为过氧化氢的一个目标蛋白。本研究表明,在包含特定粘附分子簇中RPSA氧化状态蓄积。此外,本研究还发现,在体外层粘连蛋白实验和体内促进细胞外渗实验中,RPSA氧化提高细胞粘附效率。我们的研究结果解开H2O2依赖性调制的细胞粘附特性新机制,并确定RPSA此过程中通过过氧化氢传感器进行调节。

相关报告
  • 《纳米碳材料高效催化过氧化氢电合成研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-21
    • 过氧化氢( H 2 O 2 ) 是一种绿色、可再生、环境友好的氧化剂,被广泛应用于环境修复、精细化工、电子工业等领域,被列为全球一百种最重要的化学物质之一。 H 2 O 2 的工业生产主要依赖以氢气和氧气为原料的“蒽醌法”,然而该方法存在能耗高、原料和产物转移和储存困难、安全隐患严重等问题。通过电化学氧还原途径制备过氧化氢的新方法作为一种潜在的替代路径受到重视。目前电化学氧还原制备过氧化氢过程使用的催化剂主要是贵金属材料( Pd 、 Au 、 Ag 、 Pt-Hg 等),因其储量有限、价格高昂,难以满足现代化工对绿色、环保和可持续发展的需求。而纳米碳材料有望作为贵金属催化剂的替代材料应用于 电化学氧还原反应中。 中国科学院金属研究所 沈阳材料科学国家研究中心 联合研究部能源催化材料课题组一直致力于碳催化反应过程和新颖碳催化反应体系的研发,近期在纳米碳材料高效催化过氧化氢电合成领域取得重要进展。首先通过关联典型碳材料表面化学结构与其催化氧气电化学还原生成过氧化氢的反应活性可以发现:二电子氧还原反应的选择性与 碳材料表面的羰基和羧基含量呈线性正相关关系,羧基的本征活性是羰基官能团的 5 倍以上。碳材料表面的羧基官能团是氧气电化学还原制备过氧化氢的主要活性中心。上述碳催化氧气电化学还原反应活性中心和反应动力学的研究结果同时还表明:氧还原反应的选择性主要取决于过氧化氢与羧基官能团之间的结合能力。碳材料表面的羧基活性位点上二电子氧还原过程生成的 H 2 O 2 若不能及时地脱附,极易被进一步还原发生四电子反应生成水,因此如何保证 H 2 O 2 在活性中心上及时脱附是提高其选择性和产率的关键。 基于上述反应过程和机理分析结论,源催化材料课题组齐伟博士与北京大学郭少军教授和福州大学谢在来课题组开展合作,成功实现 利用界面工程手段和反应动力学思想来调控碳催化电化学氧还原反应选择性的创新研究思路。 具体做法是利用阳离子表面活性剂(如:三甲基十六烷基溴化铵)与羧基基团的静电相互作用降低碳材料表面羧基官能团与二电子氧还原产物 HO 2 - 的相互作用, 阻止 其 被进一步还原,成功实现了高选择性电合成 H 2 O 2 的过程。这种碳 / 表面活性剂复合催化材料体系展现出目前已知报道最高的 H 2 O 2 选择性( >96% )、最宽的过电位窗口( >0.8 V )和可观的稳定性( >10h )。 鉴于纳米碳 / 表面活性剂复合电极材料在过氧化氢电合成反应中的优异催化表现,整个反应体系能耗低、绿色、可持续、稳定性好的特点,尤其是对该体系结构 - 功能关系的深刻理解,这项研究工作对未来设计开发具有实际应用前景的高产率、高稳定性和低成本的电合成过氧化氢化合物体系具有重要的指导意义。 上述两部分系统工作分别以全文形式发表在 Journal of Colloid and Interface Science (活性中心定性与定量)和 Chem (反应动力学以及表面活性剂的促进作用)杂志,论文的第一作者分别为联合研究部能源催化材料课题组的卢星宇同学和吴光栩博士。相关工作获得了国家自然科学基金、中国科学院青促会项目、辽宁省自然科学基金和沈阳材料科学国家研究中心的资助,论文作者对上述项目支持表示由衷的感谢。 论文全文链接:   Xingyu Lu, Dan Wang, Kuang-Hsu Wu, Xiaoling Guo, Wei Qi, “Oxygen Reduction to Hydrogen Peroxide on Oxidized Nanocarbon: Identification and Quantification of Active Sites” Journal of Colloid & Interface Science 2020, 573, 376-383.   Kuang-Hsu Wu, Dan Wang, Xingyu Lu, Xuefei Zhang, Zailai Xie, Yuefeng Liu, Bing-Jian Su, Jin-Ming Chen, Dang-Sheng Su, Wei Qi, Shaojun Guo, “Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In-Situ Interface Engineering with Surfactants” Chem 2020, DOI: 10.1016/j.chempr.2020.04.002.  
  • 《合肥研究院过氧化氢电合成及生物质升级研究获进展》

    • 来源专题:大气污染防治与碳减排
    • 编译者:李扬
    • 发布时间:2023-11-24
    •     近期,中国科学院合肥物质科学研究院固体物理研究所纳米材料与器件技术研究部环境与能源纳米材料中心团队,在常温常压电催化合成过氧化氢及生物质氧化升级方面取得新进展。该研究制备了负载在碳纳米纤维上的氧配位Fe单原子/团簇催化剂( FeSAs/ACs-BCC),实现了高效电催化两电子氧还原反应合成过氧化氢,并与电芬顿反应偶联实现了乙二醇的氧化升级。      研究人员利用细菌纤维素为吸附调节剂和碳源,结合湿化学浸渍、高温热解和酸刻蚀的串联工艺,合成了具有氧配位结构的Fe单原子/团簇催化剂( FeSAs/ACs-BCC)。球差校正扫描透射电子显微镜(AC-STEM)结果揭示了Fe单原子和Fe团簇的共存,结合X射线精细结构吸收光谱(XAFS)、X射线光电子能谱(XPS),确定了Fe的原子结构。该研究合成的FeSAs/ACs-BCC催化剂,在碱性条件下表现出优异的2e- ORR电催化活性和选择性、起始电位为0.78V(相对于可逆氢电极)、H2O2选择性高达96.5%。研究进一步利用H-型电解池验证H2O2能够通过电催化合成并可以在电解液中积累,并在0.2 V(相对于可逆氢电极)条件下测得H2O2产率达到1.13 ± 0.06 mol gcat-1 h-1、相应的法拉第效率为87.8 ± 4.8%。研究发现,将原位生成的H2O2与电芬顿反应偶联,以乙二醇为反应物,酸化的0.1 M Na2SO4为电解液,在转移100 C电荷后,乙二醇转化率为56.5% ± 4.5%,甲酸选择性为41.0% ± 5.0%,这显示了电芬顿工艺用于生物质原料氧化升级的可行性。