《人类病原体结核杆菌的赖氨酸乙酰化蛋白质组修饰谱解析》

  • 来源专题:结核病防治
  • 编译者: 李阳
  • 发布时间:2015-07-06
  • 赖氨酸乙酰化是一种重要的蛋白质翻译后修饰形式,不仅能够通过改变DNA结合活性来改变基因的表达,还可以调控蛋白质间的相互作用、蛋白质活性以及mRNA稳定性等。以往有研究表明,乙酰化在原核及真核生物中均普遍存在,可以调控多种重要的生物进程,具有高度保守性。结核杆菌是肺结核的病原菌,人类公共健康的强大威胁成员之一。全球每年有900万新结核感染病例,约160万例死亡。已有研究表明结核杆菌存在赖氨酸乙酰化蛋白,因此推测结核杆菌蛋白质组中含有更多不为人知的乙酰化蛋白是非常必要的。

    基于此,来自西南大学及北京市结核病胸部肿瘤研究所的研究人员合作开展了一项结核杆菌赖氨酸乙酰化修饰方面的研究,其相关成果于2015年2月发表在The International Journal of Biochemistry & Cell Biology上。

    研究人员通过高分辨率的质谱分析结合乙酰化多肽的免疫亲和富集鉴定出位于658个乙酰化结核杆菌蛋白上的1128个乙酰化位点的存在, 是目前在细菌体内鉴定到的乙酰化蛋白最高记录。此外,GO分析表明这些乙酰化蛋白参与调控包括代谢及蛋白质合成在内的多种细胞进程,且在结核杆菌中鉴定到的20个乙酰化蛋白在大肠杆菌、沙门氏菌、枯草芽孢杆菌和链霉素菌中均有同源性,其中一些乙酰化位点在这几种细菌中存在高度保守性。

    值得注意的是,结核杆菌中一些参与持久性、毒性和抗生素耐药性的蛋白(例如异柠檬酸裂解酶,一种参与结核杆菌中乙醛酸循环的核心成分)也存在乙酰化。而将异柠檬酸裂解酶乙酰化位点定点突变为谷氨酸后则会造成酶活性的降低,表明这些蛋白的乙酰化位点参与细胞进程的重要环节。

    该研究首次提供了结核杆菌乙酰化的全谱,为研究该病原菌中乙酰化广泛的调控作用提供了线索,同时也可以作为研究赖氨酸乙酰化对结核杆菌代谢、持续力和毒性影响的基础。

    信息来源:http://news.bioon.com/article/6669611.html

  • 原文来源:http://news.bioon.com/article/6669611.html;http://www.ncbi.nlm.nih.gov/pubmed/25456444
相关报告
  • 《Adv Sci | 上海药物所合作发现全新蛋白质修饰类型----赖氨酸乙酰乙酰化》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-04
    •  细胞代谢为生命过程提供能量,同时代谢物可共价修饰蛋白质来发挥信号传导功能。虽然许多代谢物在代谢通路中的作用广为人知,但它们介导细胞信号调控的功能仍有待探索。酮体(包括丙酮,乙酰乙酸和β-羟基丁酸)为脂质代谢产物,在葡萄糖缺乏的状态下,肝脏产生的酮体可以用作多种组织的替代能源,与多种病理生理状态密切相关。芝加哥大学赵英明教授团队和中国科学院上海药物研究所黄河课题组前期合作研究揭示β-羟基丁酸驱动的赖氨酸β-羟基丁酰化修饰(Kbhb)可能介导多个重要细胞进程,并鉴定了Kbhb的调控酶及底物谱。然而,作为类似的酮体代谢产物乙酰乙酸,其非代谢功能及相关的分子机制尚未明确。   基于上述科学问题,黄河课题组与赵英明教授团队、韩国成均馆大学Sangkyu Lee教授团队合作,鉴定了一种由乙酰乙酸驱动形成的全新组蛋白修饰—赖氨酸乙酰乙酰化(Kacac),并揭示了该新型修饰的关键调控因子HBO1。该研究成果以“Identification of Histone Lysine Acetoacetylation as aDynamic Post-Translational Modification Regulated byHBO1”为题于北京时间6月29日在线发表于Advanced Science杂志。   研究团队假设并验证了短链脂肪酸乙酰乙酸可以作为赖氨酸乙酰乙酰化修饰(Kacac)的前体。运用生物大分子高分辨质谱、稳定同位素标记以及免疫学等多种手段,科研人员鉴定并验证了组蛋白Kacac修饰在人、小鼠、斑马鱼的细胞中广泛存在。   进一步的细胞和体外水平实验证实了HBO1可以催化Kacac,表明了HBO1是Kacac的“Writer”。另一方面,研究人员通过对HDAC1-11进行筛选,发现HDAC3具有去除Kacac的催化活性, 表明HDAC3是赖氨酸Kacac的“Eraser”。   随后,研究团队发现通过乙酰乙酸乙酯(EAA)和酮体生成抑制剂处理细胞可以动态调节Kacac修饰水平。通过深入的Kacac组学分析,该研究在哺乳动物组蛋白上成功鉴定到了33个独特的Kacac位点,描绘了组蛋白Kacac在物种和器官之间的底物谱。对Kacac修饰底物的进一步分析揭示了酮体的非代谢功能。   该研究首次揭示了一种全新的蛋白修饰类型Kacac,探索了调控Kacac的关键酶,拓展了Kacac调控的蛋白质底物谱,阐释了Kacac参与细胞代谢调控进程的新机制、新途径,为进一步揭示Kacac修饰在各种生理、病理条件下的作用提供了理论依据。   Sangkyu Lee教授、赵英明教授和黄河研究员为本文的共同通讯作者。庆北大学 Yan Gao,芝加哥大学Xinlei Sheng、 SunJoo Kim和上海药物所谭豆豆为本文的共同第一作者。本研究得到了韩国国家研究基金(NRF)、美国国立卫生研究院、国家自然科学基金和上海市科技重大项目的基金资助。   论文链接:https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202300032
  • 《蛋白质修饰研究的最新篇章》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-10-12
    • 蛋白质修饰的重要性 蛋白质是执行细胞功能的基本功能单元,其表达受基因组和表观遗传学的调控。通常,蛋白质在表达以后还需要经过不同程度的修饰才能发挥所需要的功能。这种翻译后修饰过程受到一系列修饰酶和去修饰酶的严格调控,使得在某一瞬间细胞中蛋白质表现出某种稳定或动态的特定功能。蛋白质翻译后修饰(PTM)通过共价添加官能团或蛋白质,调节亚基的蛋白水解切割或整个蛋白质的降解来增加蛋白质组的功能多样性。 这些修饰包括磷酸化,糖基化,亚硝基化,甲基化,乙酰化,脂化和蛋白水解,并且影响正常细胞生物学和发病机理的几乎所有方面。蛋白质磷酸化是迄今为止最常见的PTM,已在大约17,500种人类基因产物中检测到。翻译后修饰是增加蛋白质组多样性的关键机制。尽管基因组仅包含20,000至25,000个基因,但估计蛋白质组包含超过100万个蛋白质。转录和mRNA水平的变化增加了转录组相对于基因组的大小,并且无数的不同翻译后修饰指数增加了蛋白质组相对于转录组和基因组的复杂性。因此,识别和理解PTM对细胞生物学和疾病治疗和预防的研究至关重要。 (蛋白修饰3d示意图) 蛋白质修饰研究进展 基于翻译后修饰蛋白质的不均一性及相对丰度低的特性,翻译后修饰蛋白质的研究主要是利用现有的蛋白质组学技术体系包括电泳、色谱、生物质谱以及生物信息学工具,对修饰蛋白质或肽段进行富集分离,消除修饰引起的不均一性并标记修饰位点,使之与理论质 量有一个差异,通过质谱检测这种差异,从而鉴定蛋白质,并通过串联质谱鉴定修饰位点。PTMs 广泛存在于真核细胞生物中,对生物体的信号传导以及生命活动至关重要,但是 PTMs 鉴定往往比未修饰多肽 鉴定更加困难。 蛋白磷酸化修饰是生物体内最为普遍也是研究最为深入的修饰方式,而其中的酪氨酸磷酸化,特别是酪氨酸激酶受体的磷酸化已经被证明对癌细胞的诱发和生长有关键作用,多种针对不同酪氨酸激酶受体的小分子抑制剂和单克隆抗体也已经被开发成为治疗癌症的一线药物。目前研究较多的蛋白翻译后修饰包括磷酸化、乙酰化、甲基化和泛素化四类修饰。 磷酸化的研究方法及关键技术有:免疫沉淀法、流式细胞分析、双向凝胶电泳法、固相金属亲和色谱等。针对乙酰化主要的研究方法有:生物质谱鉴定乙酰化修饰位点、基于特异性识别乙酰化赖氨酸残基的乙酰化抗体鉴定乙酰化修饰位点、以标记底物为基础的方法鉴定乙酰化修饰位点等。针对甲基化主要的研究方法有:甲基化特异性的 PCR、亚硫酸氢盐测序法、高分辨率熔解曲线法。 而糖基化的研究方法及关键技术有:放射性标记法、分子荧光标记法、电泳法、凝集素标记法、抗体标记法、化学酵素法等。目前所具有的对泛素蛋白探究的技术类型比较单调。对泛素蛋白的检测、泛素作用靶点的定位以及泛素蛋白本身性质的探究方法中,这些技术还必须进行不断的改进和完善。譬如,传统的蛋白质翻译后修饰研究主要依赖于基于特异性抗体的免疫检测技术或放射性标记技术。这些方法对研究由单一位点翻译后修饰介导的细胞信号转导过程起着不可替代的作用。然而,由于上述技术存在操作要求高、特异性抗体制备周期长等缺点,很难实现蛋白质翻译后修饰的大规模检测。