《美国国家标准与技术研究院(NIST)新发布一种主要使用现成的低成本部件制成的超声吸收光谱仪》

  • 编译者: 张宇
  • 发布时间:2025-04-29
  • 超声吸收光谱仪可以探测分子间相互作用,为化学工程和生物制药过程的研究提供支持。目前唯一的商用超声光谱仪成本超过10万美元,使许多机构望尘莫及。近日,美国国家标准与技术研究院(NIST)设计了一种低成本的超声波吸收光谱仪,它由来自快速原型制造的现成组件和零件组成。研究人员采用直通透射法来定量测量吸收,使用31次脉冲在不同的距离进行测量。与仅依赖两次测量的固定路径技术和脉冲回波方法相比,这些测量显著提高了定量测量吸收的计量精度。研究人员在测量中使用纯水来校正衍射效应,并通过重复测量水来传导不确定性。研究人员通过测量盐溶液和纤维素来验证光谱仪,并将数据与商用光谱仪获得的结果进行比较。两种设备的结果都在误差范围之内。值得注意的是,从这些测量中,研究人员观察到硫酸钪在1MHz附近有一个弛豫峰,此前仅通过共振光谱法报告过一次。NIST新发布的系统为大学研究人员和学生提供了一种低成本的商用超声吸收光谱仪替代方案。

    该研究的详细信息已发布在《Proceedings of Meetings on Acoustics》中。(DOI:10.1121/2.0002003)

相关报告
  • 《美国国家标准与技术研究院(NIST)发布用于太赫兹频率梳测量的超宽带光电子混频器》

    • 编译者:张宇
    • 发布时间:2025-05-30
    • 近日,美国国家标准与技术研究院(NIST)展示了他们研发的用于太赫兹频率梳测量的超宽带光电子混频技术,该技术使用经过改进的高速单向载波(MUTC)光电二极管提供高达500GHz的重复频率的相位相干检测。光电二极管本身的非线性光电子效应使电梳的谐波产生和下混过程具有显著不同的重复频率。具体来说,研究过程中生成了两个25GHz的频率梳,并使用光学滤波器来探索微波、毫米波和太赫兹频率范围内的频率梳光谱分量到基带的相干下混频。光电子混频器出色的噪声抑制性能使毫米波和太赫兹频率梳的相位相干测量成为可能,其测量时间为 τ,而艾伦偏差为 10^-13/τ。NIST进一步研究了转换损耗对反向偏置电压和光电流的依赖程度。实验结果表明,通过在最佳电压和最大可用光电流下运行光电二极管,可以将转换损耗降至最低。这项研究为毫米波和太赫兹频率梳的测量提供了一种解决方案,并有助于实现具有微共振器的完全稳定的频率梳。 该项研究的成果已发表在《Optics Letters》期刊上。(DOI:10.1364/OL.557366)
  • 《美国国家标准与技术研究院(NIST)发布全球首批3个后量子加密标准》

    • 编译者:李晓萌
    • 发布时间:2024-09-11
    • 近日,美国国家标准与技术研究院(NIST)发布全球首批3个后量子加密标准,旨在抵御量子计算机的网络攻击。 世界各地的研究人员正在竞相建造量子计算机,这些计算机将以与普通计算机截然不同的方式运行,并可能打破目前为我们在网上所做的几乎所有事情提供安全和隐私的加密。此次宣布的算法在NIST后量子密码学(PQC)标准化项目的第一个完整标准中进行了规定,并可立即使用。 这三个新标准是为未来而制定的。量子计算技术正在迅速发展,一些专家预测,一种能够破解当前加密方法的设备可能会在十年内出现,威胁到个人、组织和整个国家的安全和隐私。 美国商务部副部长Don Graves表示:“量子计算的进步在重申美国作为全球技术强国的地位和推动我们经济安全的未来方面发挥着至关重要的作用。”。“商务部正在尽其所能确保美国在量子领域的竞争力,包括NIST,处于整个政府工作的最前沿。NIST正在提供宝贵的专业知识,为我们的量子挑战开发创新的解决方案,包括组织可以开始实施的后量子密码学等安全措施,以确保我们的后量子未来。随着这项长达十年的努力的继续,我们期待着商务部在这一重要领域继续保持领导地位。” 这些标准——包含加密算法的计算机代码、如何实现它们的说明以及它们的预期用途——是NIST管理的八年努力的结果,NIST在开发加密方面有着悠久的历史。该机构召集了世界各地的密码学专家,构思、提交并评估可以抵抗量子计算机攻击的密码算法。这项新兴技术可能会彻底改变从天气预报到基础物理学再到药物设计的各个领域,但它也带来了威胁。 负责标准和技术的商务部副部长兼NIST主任Laurie E.Locascio表示:“量子计算技术可以成为解决许多社会最棘手问题的力量,新标准代表了NIST确保它不会同时破坏我们的安全的承诺。”。“这些最终确定的标准是NIST保护我们机密电子信息的努力的顶峰。” 加密在现代数字化社会中承载着沉重的负担。它保护了无数的电子机密,如电子邮件、医疗记录和照片库的内容,以及对国家安全至关重要的信息。加密数据可以通过公共计算机网络发送,因为除了发件人和预期收件人外,所有人都无法读取。 加密工具依赖于传统计算机难以或不可能解决的复杂数学问题。然而,一台功能足够强大的量子计算机将能够非常快速地筛选出这些问题的大量潜在解决方案,从而击败当前的加密技术。NIST标准化的算法基于不同的数学问题,这些问题会阻碍传统计算机和量子计算机的发展。 “这些最终确定的标准包括将它们纳入产品和加密系统的说明,”负责PQC标准化项目的NIST数学家Dustin Moody说。“我们鼓励系统管理员立即开始将它们集成到他们的系统中,因为完全集成需要时间。” Moody表示,这些标准是通用加密和保护数字签名的主要工具。 NIST还继续评估另外两套算法,这两套算法将来可以作为备份标准。 其中一组由三种为通用加密设计的算法组成,但基于与最终标准中的通用算法不同类型的数学问题。NIST计划在2024年底前宣布选择其中一两种算法。 第二组包括为数字签名设计的一组更大的算法。为了适应密码学家自2016年首次呼吁提交以来可能提出的任何想法,NIST在2022年要求公众提供额外的算法,并已开始对其进行评估。在不久的将来,NIST预计将宣布该组中的约15种算法,这些算法将进入下一轮测试、评估和分析。 虽然对这两套额外算法的分析将继续进行,但Moody表示,任何后续的PQC标准都将作为NIST此次宣布的三套算法的备份。 他说:“没有必要等待未来的标准。”。“继续使用这三个标准。我们需要做好准备,以防攻击破坏这三个准则中的算法,我们将继续制定备份计划,以确保我们的数据安全。但对于大多数应用程序来说,这些新标准是主要事件。”