《青岛能源所开发出新型双功能铁纳米杂化结构催化剂》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-04-14
  • 烯烃氧化反应是一类重要的工业反应,其氧化产物包含醛、酮、1,2-二酮、环氧化合物等,这些氧化产物在合成香料、医药中间体以及涂料、油漆等方面都具有极其广泛的应用。传统烯烃氧化反应方法(如:臭氧氧化、Wacker氧化、Lemieux-Johnson氧化、烯烃环氧化等)往往需要使用储量低、价格昂贵、毒性大的贵金属催化剂,或者需要当量甚至是过量的重金属、高碘化合物作为氧化剂,反应条件苛刻、操作复杂、催化活性低、选择性差,严重制约了烯烃氧化反应在工业生产中的应用。

      近日,青岛能源所杨勇研究员带领的低碳催化转化研究组在前期高效高稳定性铁基纳米结构催化剂研究的基础上(Chem. Sci., 2019, 10, 10283, Hot article),以可再生生物质为C和N源及廉价的Fe(NO3)3、PPh3为金属前驱体和磷源,通过便捷高效的制备工艺构建了一种兼有氧化性和Lewis酸性的双功能铁基纳米结构催化剂Fe@NPC-T(T代表煅烧温度)。具有氧化性的Fe-Nx和Lewis酸性FePO4双活性位点共同存在于催化剂表面,能够实现烯烃在温和条件下以叔丁基过氧化氢 (TBHP) 为氧化剂、水为溶剂的高效氧化转化。研究发现,烯烃经形成环氧化合物中间,通过反应条件的调控能够使反应路径在分子内Meinwald重排和分子间亲核进攻之间进行有效切换,实现烯烃到酮和1,2-二酮等重要合成砌块分子的高效转化 (如图1所示)。本研究工作将非贵金属纳米结构催化剂的研究由单一功能拓展到了双功能领域,进一步丰富了催化剂设计思路,也为烯烃氧化转化提供了绿色高效新路径。相关研究成果发表在ACS Catalysis(ACS Catal., 2020, 10, 4617.)上。文章第一作者为青岛能源所宋涛助理研究员,通讯作者为Jianliang Xiao教授和杨勇研究员。

      图1. 双功能铁纳米杂化结构催化剂催化烯烃氧化转化

      近期,该团队以廉价低毒、储量丰富的非贵金属镍盐及生物质竹笋为原料、以植酸为磷源,通过磷掺杂策略制得超细高分散纯相Ni2P纳米结构催化剂,并成功实现含氮杂环和炔基硫醚等重要精细化学品的高效绿色合成(如图2所示)。相关研究结果发表于Green Chem., 2020, 22, 651和ACS Sustain. Chem. Eng., 2020, 8, 267.

      图2. 超细高分散Ni2P纳米结构催化剂在合成氮杂环(A)和炔基硫醚(B)反应中的应用。

      上述研究得到山东省重点研发计划和英国皇家学会“牛顿高级学者”基金的资助。(文/图 宋涛)

      相关发表论文和专利链接:

      (1) Tao Song, Peng Ren, Jianliang Xiao, Youzhu Yuan, Yong Yang, Highly Dispersed Single-Phase Ni2P Nanoparticles on N,P-Codoped Porous Carbon for Efficient Synthesis of N-Heterocycles. ACS Sustain. Chem. Eng., 2020, 8, 267-277.

    https://pubs.acs.org/doi/abs/10.1021/acssuschemeng.9b05298

      (2) Tao Song, Peng Ren, Jianliang Xiao, Youzhu Yuan, Yong Yang, Highly dispersed Ni2P nanoparticles on N,P-codoped carbon for efficient crossdehydrogenative coupling to access alkynyl thioethers. Green Chem., 2020, 22, 651-656.

    https://pubs.rsc.org/en/content/articlelanding/2020/gc/c9gc04137k

      (3) Tao Song, Zhiming Ma, Peng Ren, Youzhu Yuan, Jianliang Xiao, Yong Yang, A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones. ACS Catal., 2020, 10, 4617-4629.

    https://pubs.acs.org/doi/10.1021/acscatal.9b05197

相关报告
  • 《青岛能源所开发出新型硝基芳烃高选择性还原催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-22
    • 胺类化合物作为常见的合成切块在精细化工、药物化学以及材料科学领域具有广泛的应用。目前为止,全球每年大约有400万吨胺类及其衍生物的生产量。根据美国亚利桑那大学Jón Njiarearson教授团队统计的“2015年全球销售额前200位药品”,约170种药物分子包含氨基等含氮基团。因此,硝基芳烃选择性还原生产芳胺类化合物一直以来都是化学家们研究的热点之一。其中贵金属催化剂(Pd、Pt等)表现出极其优异的催化性能,但对于硝基化合物分子中含有功能性官能团,尤其是易还原的取代基团,往往对目标产物表现出极低的选择性。   近日,青岛能源所杨勇研究员带领的低碳催化转化研究组以储量丰富、生物兼容性强及环境友好的铁盐及竹笋为原料,通过硫原子掺杂策略开发出一条便捷环保、廉价高效的负载型单相黄铁矿FeS2纳米结构催化剂(FeS2/NSC),实现功能性硝基芳烃高度选择性还原制得苯胺类化物,并表现出目前文献报道中基于非贵金属多相催化剂最高的催化活性,且反应条件温和绿色(以水为溶剂,120oC, 2.0 MPa H2)。相关结果发表在权威期刊ChemSusChem,被选为VIP和期刊封面(图1),并受邀作为Cover Profile对本工作的研究思路和本研究组进行了报道。研究组职工段亚南为本论文第一作者,杨勇研究员为通讯作者。   在催化剂开发过程中,通过大量控制实验和条件优化,实现N,S-双原子共掺杂多级孔碳载体上高分散负载单相、均一尺寸黄铁矿FeS2纳米颗粒。该催化剂在水相中对不同官能团取代的硝基芳烃,如卤素、-C=O、-C=C、-CONH2、-ester、-CN等易还原官能团表现出优秀的反应活性、选择性以及催化性能稳定性。同时,若干含有硝基基团的药物分子也可被高效高选择性还原。最后,研究人员通过控制实验、原位表征并结合理论计算揭示了N,S-双原子共掺杂碳载体与FeS2纳米颗粒间相互作用及载体的大比表面积和多级孔结构特性有效促进了硝基基团高活性和高选择性还原。   上述研究得到山东省重点研发计划(2019GGX102075)和英国皇家学会“牛顿高级学者”基金(NAF-R2-180695)的资助。(文/图 宋涛)
  • 《青岛能源所开发出高活性的生物质碳负载Fe/Pt单原子双功能催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-21
    • 单原子催化剂因其具有最大的原子利用效率、量子尺寸效应和活性中心的配位不饱和构型而在催化领域受到广泛关注。在过去的几年里,单原子催化剂在燃料电池、电解水和金属-空气电池等可再生能源技术领域取得了快速的发展。然而,单原子催化剂的活性位点数量有限,催化剂合成过程相对复杂,并且大多数用于合成单原子催化剂载体的化学品价格昂贵、毒性大,严重限制了单原子催化剂的实际生产应用。同时,由于金属与载体之间的弱相互作用,这些具有高表面能的单原子在制备过程中也容易发生迁移和聚集。因此,探索环境友好、廉价且高效的载体以及高金属载量催化剂的制备工艺对于合成双金属单原子催化剂至关重要。 图1 Fe1Pt1/NC双单原子催化剂的合成路径 图2 Fe1Pt1/NC和Fe1/NC的球差电镜和EXAF表征图   近日,青岛能源所梁汉璞研究员带领的能源材料与纳米催化研究组,在利用可循环再生的生物质制备单原子的基础上(Carbon, 2020, 157614-621. DOI: 10.1016/j.carbon.2019.10.054.),提出一种价格低廉、环保且可大规模生产的Fe/Pt双单原子催化剂的制备策略(图1)。该方法以富含铁的可再生生物质紫菜作为原材料,在不添加任何铁源的情况下,紫菜利用自身毛细管吸附作用吸收含氮溶液达到饱和状态,再经过高温热解即可得Fe-N-C前驱体。之后,在水溶液中通过Fe-N-C的微孔捕获和氮锚定作用可以实现对Pt4+的强锚定,从而得到Fe/Pt双单原子催化剂(Fe1Pt1/NC)。该催化剂具有较高的比表面积和丰富的孔结构,Fe和Pt的负载量分别高达0.166 wt% 和2.29 wt%。经研究证明,第二种金属原子Pt的引入增加了催化剂的活性位点数量,Fe1Pt1/NC中的Fe和Pt均为单原子态(图2),以FeN4和PtN4的结构形成活性中心,使得催化剂具有优于Fe-N-C前驱体和商业Pt/C催化剂的氧还原反应和析氢反应的催化活性。该研究工作为利用可再生生物质设计高活性的多功能单原子电催化剂提供了一种有效途径。相关成果近期发表在《ACS Sustainable Chemistry & Engineering》杂志上(ACS Sustain. Chem. Eng. 2021, 9, 1, 189–196. DOI: 10.1021/acssuschemeng.0c06558)。   上述研究获得中国科学院人才项目基金,大连清洁能源国家实验室和中国科学院科研创新基金,青岛创业创新领军人才基金,大连化物所-青岛能源所两所融合项目基金以及中国科学院绿色过程制造创新研究院项目基金的支持。