《印度科学家解析稻瘟病无毒基因序列以提高水稻抗病性》

  • 来源专题:农业科技前沿与政策咨询快报
  • 编译者: 李楠
  • 发布时间:2017-11-28
  • 水稻是印度最重要的粮食安全作物之一,尽管有较好的管理技术,但还是不能避免稻瘟病的侵袭。稻瘟病由真菌——稻瘟菌(Maganportheoryzae)引起,稻瘟菌几乎可以侵染水稻植株的各个部位,在植株苗期和穗期尤为严重。在印度,几乎所有的水稻种植地区都会爆发稻瘟病,特别是在高湿度、低温的夜间条件下更易出现,严重时会导致年产量下降75%以上。

    为了有效控制稻瘟病的蔓延,印度农业研究理事会-国家植物生物技术研究中心(ICAR- NRCPB)在过去16年中不断积极研究水稻-稻瘟病系统,已从不同水稻品种和野生稻中识别并克隆了抗稻瘟基因Pi54,Pi54rh和Pi54of。稻瘟病菌基因组序列有3800万碱基对,存在于6条染色体中,已有研究推测稻瘟病菌基因组中的无毒基因对于控制稻瘟病有重要意义,因为该基因在宿主-病原体相互作用的过程中给宿主传递抗性方面起到重要作用。

    日前,来自ICAR- NRCPB的科学家T·R·沙玛(T.R. Sharma)博士等利用454焦磷酸测序技术(454 GS FLX Pyrosequencing)解析了目前印度流行的主要稻瘟病菌——RML-29号稻瘟病菌无毒基因的全部序列,并预测含有1144个蛋白质编码基因。更重要的是,确定了稻瘟病菌中的AvrPi54基因,该基因与宿主体内的Pi54基因相互作用,将抗性传递给水稻。该研究结果已经发表在国际刊物《植物科学前沿》(Frontier in Plant Science,2016年8月刊)。

    此项研究应用新的计算和分子生物学方法,首次克隆植物病原体内的无毒基因,新方法可以在识别稻瘟病菌基因研究中节省大量人力及时间成本,并可以取代更为复杂的图位克隆法。本研究克隆的AvrPi54基因对更好地理解宿主-病原体相互作用有所帮助。此外,AvrPi54基因和Pi54基因可能应用到开发更广的抗稻瘟病基因谱系中。

    印度国家植物生物技术研究中心(ICAR- NRCPB)还曾参与国际水稻基因组测序计划(IRGSP, 2005)。

    (编译 李楠)

相关报告
  • 《收获野生基因使作物重新产生抗病性》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2019-06-03
    • 这种方法可以廉价快速地转移抗病基因。 一个全球研究者联盟开创了一种新方法,快速从野生植物中获取抗病基因,并将其转到家养作物。这项技术有望彻底改变全球粮食供应中抗病品种的开发。 这项名为AgRenSeq的技术是由英国John Innes Centre的科学家与澳大利亚和美国的同事合作开发的,今天在《自然生物技术》上发表。 这一结果加速了对抗威胁全球粮食作物的病原体的斗争,包括小麦、大豆、玉米、大米和马铃薯,它们构成了人类饮食中大量的谷物。 悉尼农业学院和生命与环境科学学院的Harbans Bariana教授是谷物锈病遗传学的全球专家,也是该论文的合著者。 他说:“这项技术将支持对植物抗病性新来源的快速跟踪发现和特征描述。” 目前的研究建立在Bariana教授与CSIRO和John Innes Centre以前的合作工作的基础上。它使用了两个由这个国际小组克隆的小麦基因作为对照,Bariana教授对这项研究进行了表型评估。 AgRenSeq让研究人员搜索在现代作物野生亲缘中发现的抗性基因库,以便快速识别与抗病能力相关的序列。 从那里,研究人员可以利用实验室技术克隆这些基因,并将它们引入国内优质作物品种中,以保护它们免受锈菌、白粉病和黑森瘿蚊等病原体和害虫的侵害。 John Innes Centre的作物遗传学项目负责人、该研究的主要作者Brande Wulff博士说:“我们已经找到了一种方法,可以扫描作物野生亲缘植物的基因组,找出我们需要的抗性基因,并且我们可以在创纪录的时间内完成这项工作。这个过程过去需要10到15年的时间,就像大海捞针一样。 “我们已经完善了这种方法,这样我们就可以在几个月内克隆出这些基因,只需几千美元,而不是数百万美元。” 这项研究表明,AgRenSeq已经成功地在小麦的一个野生亲戚身上进行了试验,研究人员在数月内鉴定并克隆了4个对毁灭性茎锈病病原体的抗性基因。使用传统方法,这个过程很容易需要十年时间。 野生小麦的研究正被用作概念的证明,为保护许多有野生亲缘关系的作物(包括大豆、豌豆、棉花、玉米、土豆、小麦、大麦、大米、香蕉和可可)的方法做准备。 现代优质作物在寻求更高的产量和其他理想的农艺性状时,失去了许多遗传多样性,尤其是抗病性。 从野生亲缘植物中重新引入抗病基因是一种经济和环境可持续地培育更有弹性的作物的方法。然而,使用传统育种方法将这些基因导入作物是一个艰难的过程。 这种新方法结合了高通量DNA测序和最先进的生物信息学。 “我们现在拥有的是一个抗病基因库,我们已经开发出一种算法,使研究人员能够快速扫描该库并找到功能性抗病基因,”John Innes Centre的论文第一作者Sanu Arora博士说。 “如果我们有一种流行病,可以去我们的基因库,通过我们的多样性小组对这种病原体进行接种,并找出抗性基因。通过快速克隆和快速育种,我们可以在几年内将抗性基因导入优良品种,就像凤凰从灰烬中升起一样。”
  • 《印度科学家解析小麦锈病病菌基因组》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 小麦是世界超过一半人口的主粮,在印度也是保障粮食安全的重要作物。目前,小麦主要受到3种锈病的影响,包括条锈病、叶锈病、秆锈病,其中叶锈病的发生最为频繁,相比其他两种小麦锈病,叶锈病造成的经济损失更大。遭受严重病虫害时,如果不喷施农药,叶锈菌会导致作物产量损失超过50%。受小麦锈病的影响,印度小麦生产在1970年到1980年间出现了严重问题。之后,因培育出了抗锈品种,麦锈病得到了有效控制,但印度大多数抗锈品种具有小种专化抗性。此外,小麦叶锈菌自身还在不断衍生出新的种类和生物类型。因此,对于印度的小麦育种科学家和决策部门来说,小麦锈病防治仍然是农业领域的重要问题。 为了探究锈菌变异的分子机制,印度农业研究委员会国家植物生物技术研究中心(ICAR-NRCPB)主任T·R·沙玛博士(T. R. Sharma,新德里)联合印度农业研究委员会附属的3家机构以及两所国家农业大学,组织开展叶锈菌全新基因组测序项目。该项目的主要任务是解析相对稳定的小麦锈病菌(Puccinia triticina)Race 106和变异性很强的Race77及其13个生物类型所组成的基因组。小麦锈病菌Race 106于1930年首次发现后一直保存于印度西姆拉,在过去的85年来未发生变异;而Race77于1954年发现于印度比哈尔,之后变异为13种类型。 最终,T·R·沙玛博士带领的科研团队应用454 GSFLX platform解析了小麦叶锈病菌的15种基因组(共计约1500 Mb数据量)。其中Race 77序列为3.41Gb(测序深度33 X ),包括27678个蛋白编码基因(1129 bp)。Race 106序列为2.91 Gb(测序深度27X),包含26384个蛋白编码基因(1086 bp)。Race77和Race106中的重复序列分别达37.49 %和39.99%。此外,在重复性片段(segmental duplication, SD)、重复序列和SNP/InDel方面,Race77与Race106均不同。其中Race 77基因组的某些区域对基因重组非常敏感,这使得Race 77变异性很强。该研究侧重于基因组结构、组织、变异和锈病菌致病性的分子机理等方面的研究,对推动印度小麦改良进程具有里程碑式的意义。该研究论文已发表在国际期刊《Genome Biology and Evolution》。 由ICAR-NRCPB主持完成的小麦锈病病菌基因组项目得到了印度生物技术部(Department of Biotechnology)的资助。参与项目的三个ICAR机构分别是:位于新德里的国家植物生物技术研究中心(National Research Centre on Plant Biotechnology)、位于西姆拉的印度小麦与大麦研究所(Indian Institute of Wheat and Barley Research)Flowerdale中心,以及印度农业研究所(Indian Agricultural Research Institute)。参与项目的两所国立大学分别是:位于哥印拜陀市的卢迪亚纳&泰米尔纳德农业大学以及旁遮普农业大学。 值得一提的是,在各种国际和国家层面的基因组测序项目的推动下,ICAR-NRCPB已经成功解析了水稻、番茄、木豆、小麦和芒果等作物的完整基因组序列,这些研究成果为作物育种学家深入开展作物改良研究奠定了基础。 (编译 李楠)