《模块化技术推动中微子探测器发展》

  • 来源专题:重大科技基础设施领域知识集成服务平台
  • 编译者: 魏韧
  • 发布时间:2019-11-08
  • 2019年已进入数字社会,物理学家希望中微子探测器产生更大的影响。氩立方中微子探测器(ArgonCube)是一个正在开发的原型探测器,用相当于4K电视的分辨率捕捉粒子轨迹。

    在过去的几十年里,液态氩已经发展成为中微子探测器的首选介质。作为一种基本粒子,中微子是理解宇宙中为什么会有这么多物质的关键。这种探测器可以捕捉中微子撞击原子核并与之相互作用时产生的其他粒子和光的图像。

    目前最先进的液氩中微子探测器,如Microboone探测器、意大利格兰萨索实验室探测器(Icarus)和大型深层地下中微子原型探测器(Protodune),使用导线捕捉中微子相互作用释放的电子。几千根导线纵横交错在探测器上收集坐标,通过算法进行中微子相互作用的三维重建。

    深层地下中微子探测器(DUNE)将研究三种已知类型的中微子在传播时是如何变化的,进一步探索中微子振荡现象。科学家们将从费米实验室每秒发射数万亿个中微子,穿越1300千米的路程,到达南达科他州。深层地下中微子探测器(DUNE)将使用远距离探测器模块中的导线室,并测量中微子离开费米实验室时的束流。每个束流脉冲都会有十几个中微子相互作用,它们在探测器内叠加,利用二维成像来解开这些事件将是一个挑战,因此科学家需要开发一种新型的液氩探测器。

    人们提出制造一个模块化(Pixeled)探测器的设想。中微子探测器每平方米可以容纳大约10,0000个芯片。每个通道都是一个独立的通道,可以提供关于探测器中发生的事件的信息。为保证灵敏度,微小的电子器件需要紧挨着液态氩中的芯片,但如果使用标准电子设备电源,探测器中的氩会沸腾。

    Dwyer和Berkeley实验室的专用集成电路(ASIC)工程师Carl Grace提出了一种新的方法,当信号到达芯片时,芯片会被唤醒,记录信号后回到休眠状态。不仅可以解决上述问题,还能节约电力。该团队于2016年12月启动研究课题,2018年1月,在伯尔尼科学家制造的液氩测试探测器上进行芯片测试,并收集了第一批宇宙射线的三维图像。

    若将这种设想应用在费米实验室的设备上,我们还需要更多的电子设备。下一步是与工业制造商合作,实现芯片和读出面板商业化,它们能保证大约50万芯片的处理能力。

    尽管氩立方中微子探测器(ArgonCube)基于模块化的电子产品引发关注,但它们并不是DUNE近距离探测器的唯一技术创新。科学家们还研发了产生电场的新型光检测系统和技术,将信号引向电子器件。

    在大多数液氩探测器中,信号通过流体漂移到悬挂在探测器一侧的线上。目前氩立方中微子探测器(ArgonCube)正在寻求一种更加模块化的方法,将探测器分解成更小的单元,而这些单元仍然包含在低温恒温器中。这样信号不需要传播得太远、氩气不需要那么纯净,信号就可以到达目的地,还便于检索和修复单个模块。

    但这需要用液态氩填充探测器,并在操作过程中保持适当的压力以适当过滤杂质,同时使流体在模块周围(和模块之间)循环,以保持均匀的温度分布。

    来自23个机构的100多位物理学家正在研究氩立方中微子探测器(ArgonCube),来自30多个国家的1000多位中微子物理学家正在研究深层地下中微子探测器(DUNE)。最初的一个幻想现在已经变成了现实,未来该技术将表现出更好的潜力。

  • 原文来源:https://news.fnal.gov/2019/08/powered-by-pixels/
相关报告
  • 《NOvA探测超新星中微子爆发》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2021-03-19
    • NOvA实验(NuMI Off-axis νe Appearance Experiment)因使用费米实验室的加速器的粒子束观测中微子振荡而闻名,它一直在关注从超新星到磁单极子的各种现象。 研究中最引人注目的天体物理现象是超新星。当一颗大质量恒星坍缩时,它99%的能量通过中微子爆发释放。虽然中微子携带的能量远远超过光子,却更难观测到。而NOvA的粒子探测器能够探测超新星产生的中微子。如果一颗超新星在星系中诞生,NOvA的14000吨的远端探测器(far detector)将在几秒的爆发中观测到数千个中微子,而300吨的近端探测器(near detector)能观测到几十个。 在Journal of Cosmology and Astroparticle Physics上即将发表的一篇论文中,NOvA合作小组描述了用于触发这种爆发的系统。由于附近的超新星非常稀有,中微子数据价值很高,NOvA使用了多个系统探测,以确保收集超新星数据。除了对这些观测数据中的中微子爆发进行连续实时搜索,NOvA还订阅了超新星预警系统(SNEWS),这是一个中微子实验网络,当任何两个设施观测到类似的超新星活动,该网络会相互提醒。NOvA还订阅了LIGO/Virgo合作观测到引力波事件时发出的警报,并将每个引力波事件都视为数据的潜在来源。 解释大多数引力波事件的最简单模型——黑洞在真空中合并——无法预测粒子的爆发。但如果黑洞在气体介质中融合,粒子就会被加速,从而可能会产生可观察的信号。其他解释引力波事件的替代模型也可能预测NOvA可见的粒子爆发。 另一种可能引发NOvA的情况是识别错误,即超新星被误认为是黑洞引力波事件。这项合作搜索了从超新星状的中微子到高能粒子雨NOvA可见的所有爆发。到目前为止,利用截至2019年年中报道的20多个引力波事件数据,NOvA尚未发现任何信号的迹象。未来几年引力波探测器的功能将迅速提高,会有更多的机会取得新发现。 NOvA的地下近距离探测器已被用来研究地下宇宙射线μ子的季节性变化,其大型远距离探测器被用于寻找其他奇异的宇宙现象,如对磁单极子的搜索。
  • 《探索 | 可调谐红外双波段光电探测器,助力多光谱探测发展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-06-21
    • 红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。 近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。 该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE??谐振模式,增强特定入射光的光吸收。 通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹? Jones,高于多数短波红外探测器。 图1 双波段红外探测器结构图及相关仿真和实验结果 图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线 此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。 图3 光电成像系统及成像结果 这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。