登录
机构网站
切换导航
登录
机构网站
首页
到馆服务
学科服务
研究支持
情报产品
数据资源
科学传播
关于我们
首页
情报产品
快讯详情
《厚积“薄”发 中国首支激光薄膜团队国际摘“金”》
来源专题:
中国科学院亮点监测
编译者:
liuzh
发布时间:
2018-12-12
10月10日,来自中国科学院上海光学精密机械研究所的消息,该所的薄膜光学实验室在2018年基频激光反射薄膜元件激光损伤阈值国际竞赛中再次获得第一名。
展开更多
60浏览量
0点赞
收藏
原文链接
分享
评论
相关报告
《上海光机所研制的基频反射膜在2018年激光损伤阈值水平国际评比中获得最佳结果 》
来源专题:
中国科学院亮点监测
编译者:
yanyf@mail.las.ac.cn
发布时间:
2019-01-09
2018年9月23日至26日,在第50届SPIE高功率激光光学材料年会(SPIE Laser-Induced Damage in Optical Materials 2018:50th Anniversary Conference)组织的基频反射膜激光损伤阈值水平国际竞赛中,由薄膜光学实验室研制的多层介质反射膜样品取得最佳结果,功能性激光损伤阈值比第二名高出20%。这是上海光机所继2012年在该国际竞赛中取得基频偏振膜激光损伤阈值竞赛第一名的佳绩后首度参赛,并再次取得最好结果。 一年一度的SPIE激光损伤国际会议在美国Boulder举办,代表着光学材料激光损伤研究领域的国际最高水平。2008年,美国劳伦斯利弗莫尔国家实验室发起了薄膜激光损伤阈值国际竞赛,庆祝SPIE高功率激光光学材料年会四十周年,同时了解当前最先进的激光薄膜损伤阈值水平。此后,该国际激光损伤竞赛每年举办一次。2018年适逢五十周年,被视为光学材料激光损伤领域的一大盛事。本次薄膜竞赛的主题是基频反射膜,对膜层的光谱性能要求为:正入射时反射率大于99.5%,使用波长为1064nm。共有来自中国、美国、德国、瑞士、日本、立陶宛等6个国家的18家单位参赛,包括美国Melles Griot、Edmund Optics、TelAztec LLC,德国汉诺威激光中心、Laser Components,肖特公司和同济大学等多家国内外知名研究机构或公司。阈值指标评定采用双盲办法,由非技术人员将所有参赛样品统一包装、并以字母进行编号(如:A1、A2、B1),再将样品送至Spica Technologies, Inc.进行激光损伤阈值测试。测试激光参数如下:波长1064nm、脉宽3ns、入射角度0°。 图1所示的阈值测试结果表明上海光机所研制的基频反射膜在激光能量密度低于82J/cm2时,膜层没有任何损伤。功能性激光损伤阈值高达94J/cm2。 反射膜在激光系统中精密操纵激光束的传输,其性能直接影响整个激光装置的输出能量和光束质量,是国际激光薄膜领域同行重点研究的薄膜类型。本次参赛样品的薄膜沉积技术包括电子束蒸发、离子束辅助沉积、离子束溅射、磁控溅射等技术。参赛样品采用的高折射率镀膜材料主要包括HfO2、Al2O3、Ta2O5等。如图2所示,采用相同沉积技术和相同镀膜材料制备的反射膜激光损伤阈值存在较大差异,体现了激光损伤阈值与沉积工艺的相关性。 上海光机所薄膜光学实验室是我国第一支专业从事激光薄膜研究的团队,至今已有五十余年的研究历史,在激光薄膜设计、制备,及激光与薄膜态材料相互作用方面具有雄厚的积累。在国家科技重大专项、国家高技术863计划等多个项目的持续支持下,为神光系列高功率激光装置、超强超短激光装置提供了大量主要的高损伤阈值激光薄膜,满足了国家战略需求。 近年来,上海光机所针对提升反射膜激光损伤阈值面临的“灾难性”激光损伤探测与抑制难题开展了深入细致的研究工作。开发了激光“预植”缺陷技术,揭示了基板表面结构性缺陷和膜层界面缺陷共同诱导的激光损伤机制。针对基板难以实现零结构性缺陷加工的困难,提出了基板缺陷缝合修复技术,缝合后激光损伤阈值接近无结构性缺陷膜层的水平;针对膜层界面问题,创新发展了渐变界面沉积技术,攻克了结构性缺陷和界面缺陷共同诱导的灾难性损伤难题。相关研究工作大幅提高了各类介质薄膜元件的激光损伤阈值,在薄膜元件激光损伤阈值提升的长期竞争过程中巩固并强化了我国的国际领先地位。
展开更多
168浏览量
0点赞
收藏
原文链接
评论
《科学家们制造出具有诱人电子特性的薄膜 正如理论学家所预测的那样,实验表明,钡锆硫化物薄膜对太阳能电池、发光二极管有很大的应用前景》
来源专题:
纳米科技
编译者:
郭文姣
发布时间:
2019-12-25
科学家们已经用硫化锆钡(BaZrS3)制成了薄膜,并证实这些材料具有理论学家预测的诱人的电子和光学特性。 这种薄膜结合了超强的光吸收和良好的电荷传输——这两种特性使它们成为光伏和发光二极管(led)等应用的理想选择。 例如,在太阳能电池板方面,实验结果表明,与厚度相同的传统硅基材料相比,BaZrS3薄膜在将阳光转化为电能方面的效率要高得多,布法罗艺术与科学大学的物理学教授、首席研究员郝曾博士说。这可以降低太阳能的成本,特别是因为新电影的表现令人钦佩,即使它们有缺陷。(曾解释说,制造近乎完美的材料通常更贵。) “几十年来,只有少数半导体材料被使用,硅是主要材料,”曾说。“我们的薄膜为半导体研究开辟了新方向。我们有机会探索一种全新材料的潜力。” 这项研究发表在11月的《纳米能源》杂志上。 北京大学物理学博士研究生魏秀成、许浩蕾为第一作者。该项目由美国能源部(DOE) SunShot奖和国家科学基金会(NSF)可持续化学、工程和材料奖资助,包括来自UB的研究人员的贡献;太原师范大学、南方科技大学、西安交通大学、中国科学院等;洛斯阿拉莫斯国家实验室;和伦斯勒理工学院。 理论预测启发的实验 BaZrS3属于一种被称为硫族钙钛矿的物质,它是无毒的、富含地球的化合物。近年来,理论家们已经计算出各种各样的硫族钙钛矿应该具有有用的电子和光学性质,这些预测引起了像曾这样的实验主义者的兴趣和想象。 BaZrS3并不是一种全新的材料。曾研究了该化合物的历史,发现其历史可以追溯到20世纪50年代。 “它已经存在了半个多世纪,”他说。在早期的研究中,尼亚加拉瀑布的一家公司将其制成粉末。我认为人们很少关注它。” 但是薄膜——而不是粉末——是光电和发光二极管等应用所需要的,所以这就是曾的团队着手创造的。 研究人员用激光加热和蒸发氧化锆钡来制作BaZrS3薄膜。蒸汽沉积在蓝宝石表面,形成一层薄膜,然后通过一种称为硫化的化学反应转化为最终的材料。 “半导体的研究传统上高度集中在传统材料上,”Hui说。“这是一个探索新事物的机会。硫族钙钛矿与广泛研究的卤化物钙钛矿有一些相似之处,但不受后者材料的毒性和不稳定性的影响。 “现在我们有了由BaZrS3制成的薄膜,我们可以研究它的基本特性,以及如何将其应用于太阳能电池板、led、光学传感器和其他应用,”魏说。 除了国家科学基金会和能源部的SunShot项目外,该研究还得到了中国国家自然科学基金会和美国国家核安全局实验室的支持,后者指导了研究和开发项目。
展开更多
222浏览量
0点赞
收藏
原文链接
评论