《美韩大学教授联合改进柔性超级电容器 能量密度性能直逼电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-10-17
  • 近日,使用简单的逐层涂布技术,美国和韩国的研究人员开发了一种纸质柔性超级电容器,该超级电容器具备高能量和高功率密度的极佳性能。

    我们通常根据三种性质来判断储能装置的优劣:能量密度、功率密度和循环稳定性。与电池相比,超级电容通常具有高功率密度,但是能量密度低,即超级电容存储电量的能力要弱于电池,但是瞬间充放电能力要优于电池。

    所以想要将电容作为储能设备,其低能量密度是最大的限制。为了提高超级电容器的性能,韩国大学化学与生物工程系的Lee和合作者Jinhan Cho就提高超级电容器的能源密度进行研究,同时他们将保持其高功率产出。

    实验中,首先,他们将纸样品浸入含有胺表面活性剂材料的溶液的烧杯中,其中,该表面活性剂可以将金纳米颗粒粘合到纸上;接着,他们将纸浸入含有金纳米颗粒的溶液中。由于纸的本质是一种纤维,且纤维是多孔的,所以表面活性剂和纳米颗粒进入纤维后会很牢固的附着在上面,以此在每个纤维上形成共形涂层。

    通过重复浸渍步骤,研究人员得到了一张导电纸,随后他们在其上添加了交替层的金属氧化物储能材料,如氧化锰。对这一过程,Lee表示:“这基本上是一个非常简单的过程,我们在烧杯中交替进行操作,为纤维素纤维提供了良好的保形涂层。这样,我们就可以折叠所得到的金属纸而不损坏导电性。”

    研究人员表明,他们的自组装技术改进了纸张超级电容,据测试,该金属纸张超级电容器的最大功率和能量密度分别为15.1 mW / cm2和267.3 uW / cm2,基本超过传统纸张或纺织超级电容。

    值得注意的是,此研究中,研究人员使用的是金纳米颗粒,因为该材质颗粒易于使用,但他们计划使用较便宜的金属如银或铜,以降低材料成本。

    虽然这项研究涉及到小型纸张样本,但是基于实际应用中解决方案的技术要求,研究人员表示完全可以使用更大的储罐甚至喷涂技术将其放大使用。对于该技术,Lee还补充说:“我们对施涂在纸张上的涂层进行了纳米级控制,如果我们增加层数,性能将继续增加。”

    接下来,研究团队将测试柔性织物上的技术,以及开发可与超级电容器配合使用的柔性电池。

    关于该技术的应用前景,佐治亚理工学院机械工程学院助理教授Seung Woo Lee表示:“这种灵活的储能装置为可穿戴设备和物联网设备之间提供独特的连接方式,未来它将会应用于生物医学传感器、消费电子和军事电子产品等,将柔性电容与电子设备相结合,它可以推动最先进的便携式电子产品的发展。”

相关报告
  • 《我国开发出高能量密度的柔性钠离子微型超级电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-11-07
    • 中国科学院大连化学物理研究所二维材料与能源器件研究组(DNL21T3)研究员吴忠帅团队与中国科学院院士包信和团队合作开发出具有高能量密度、高柔性、高耐热性能的柔性平面钠离子微型超级电容器。 微型化电化学储能器件已被广泛认为是柔性化、微型化、智能化集成电子产品的关键电源,如遥感器、微型机器人和自供电微系统等。杂化微型超级电容器,因结合微型电池的高能量密度和微型超级电容器的高功率密度的优点,是一种新型的微型电化学储能器件。相对于金属锂,钠资源丰富、成本低廉、且钠的电化学性能与锂相似,因此,开发出钠离子微型储能器件具有重要的应用前景。 最近,该团队以海胆状的钛酸钠为电池型的负极、多孔活化石墨烯为电容型的正极,结合高压离子液体凝胶电解液,成功构建了柔性化平面钠离子微型超级电容器。通过电池型负极和电容型正极的有效耦合,该钠离子微型超级电容器能够在3.5 V的高压下稳定工作,具有高能量密度37.1 mWh/cm3和超低的自放电速率(44h,从3.5V到2.1V)。该钠离子微型超级电容器具有多方向快速离子扩散通道,极大地降低了电荷转移电阻,并显著提高了功率密度。同时,由于器件的平面几何结构和离子凝胶电解液的不可燃性,该微型器件具有良好的机械柔韧性和80℃的高温稳定性。 上述工作得到国家自然科学基金、国家重点研发计划等的资助。相关研究成果发表在《先进科学》(Advanced Science)上。
  • 《超级电容器植入物既轻又柔能降解》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-26
    • 兰州大学物理科学与技术学院教授兰伟课题组联合美国休斯敦大学教授余存江和兰州大学基础医学院教授王凯荣,研究了一种轻薄、柔性的全生物可降解超级电容器植入物。该器件具有较高的能量密度和功率密度,且全部由绿色、安全、生物相容性的材料构成,任务完成后可在生物体内完全降解并被吸收,经自然新陈代谢排出体外,无需二次手术移除,具有安全、健康、低成本等特点。该研究有望为下一代生物可降解植入式医疗电子器件或其他瞬态电子器件的供能问题提供能量解决方案。近日,该研究论文发表在《科学进展》上。 植入式医疗电子器件有望实现健康的实时监测与精准诊疗,目前其能量供应主要依赖于植入式一次电池。这种电池会占据整个器件的大部分质量和体积,在电池耗尽或工作结束后需要通过手术去替换或移除。由于电池中包含有毒或有害物质,在植入前需要对其外部进行严格的刚性封装和生物相容性处理。 超级电容器具有快速充放电、功率密度高和长寿命等特点,可为有源的植入式医疗电子器件进行供能,被认为是一种理想的储能装置。研究人员采用简单、绿色、可控的电化学氧化策略,在水溶性金属钼箔表面原位生长了一层富缺陷的非晶氧化钼微纳米片阵列作为电极,生物相容的海藻酸钠水凝胶作为电解质,组装成对称固态超级电容器植入物。研究人员表示,封装后的器件可在模拟体液环境中有效工作长达一个月,且实现了工作寿命的长短可控。器件的能量密度较高,在不同角度持续弯曲数百次之后,未发现明显的能量衰减,通过器件串并联可为各类商用电子产品进行供能。 研究人员将该器件植入大鼠皮下后能正常工作,任务完成之后的半年内,该器件通过一系列水解反应和新陈代谢被自然吸收,未对生物体产生任何不良反应。